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Abstract—In this paper, we present an optimization technique or
a learning algorithm using the hybrid architecture by combining the
most popular sequence recognition models such as Recurrent Neural
Networks (RNNs) and Hidden Markov models (HMMs). In order to
improve the sequence/pattern recognition/classification performance
by applying a hybrid/neural symbolic approach, a gradient descent
learning algorithm is developed using the Real Time Recurrent
Learning of Recurrent Neural Network for processing the knowledge
represented in trained Hidden Markov Models. The developed hybrid
algorithm is implemented on automata theory as a sample test beds
and the performance of the designed algorithm is demonstrated and
evaluated on learning the deterministic finite state automata.

Keywords—Hybrid systems, Hidden Markov Models, Recurrent
neural networks, Deterministic finite state automata.

I. INTRODUCTION

SEQUENCE recognition is a major step in many
applications ranging from speech recognition, signature

verification, time series modelling and prediction to
bioinformatics. Hidden Markov models (HMMs) are
one of the most popular techniques for sequence modelling
and classification because they are easy to train. However,
HMMs generally do not perform satisfactorily on difficult
recognition problems. Recurrent neural networks (RNNs) are
alternative methods for modelling sequences and they have
excellent generalization performance, but training RNNs can
be very difficult.

Previously, it has been shown by several researchers [14],
[19], [25] that recurrent neural networks are excellent tools
for precessing existing domain theories with hidden states
through learning and that learned knowledge can be extracted
in symbolic form. Recently, there has been a lot of interest in
combining symbolic and neural learning. There are different
ways in which neural and symbolic learning can be combined
to solve a given learning task. It is, however, difficult to
interpret the knowledge stored in neural networks.

A. Hybrid Systems: Recurrent Neural Networks Based on
Hidden Markov Models

Recurrent neural networks (RNNs) have been an important
focus of research as they can be applied to difficult problems
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involving time-varying patterns. Their applications range
from speech recognition and financial prediction to gesture
recognition [23]. They have the ability to provide good
generalization performance on unseen data but are difficult
to train. Hidden Markov models (HMMs), on the other
hand, have also been applied to solve difficult real world
problems involving time-varying patterns. For instance, they
have been very popular in areas of speech recognition
[11]. Training HMMs is easy, i.e., they learn faster when
compared to recurrent neural network, but their generalization
performance may not perform satisfactorily when compared
to the performance of recurrent neural networks.

The structural similarities between HMMs and RNNs are
the basis for mapping HMMs into RNNs. The recurrence
equation in the recurrent neural network resembles the
equation in the forward algorithm in the HMMs. The
combination of the two paradigms into a hybrid system may
provide better generalization and training performance which
would be a useful contribution to the field of machine learning
and pattern recognition. We call the new hybrid architecture
as hybrid HMM-RNN in further discussions.

B. Significance of HYBRID HMM-RNN

The structural similarities of hidden Markov models and
recurrent neural networks form the basis for combining the two
paradigms into a hybrid architecture. Why is it a good idea?
Most often, first-order HMMs are used in practice in which
successor states are dependent only on the previous state. This
assumption is unrealistic for many real world applications of
HMMs. It has been shown that RNNs can learn higher-order
dependencies from training data [4]. Furthermore, the number
of states in the HMMs needs to be fixed beforehand for
a particular application. However, the numbers of states for
different applications vary. The theory on RNNs and HMMs
suggest that the combination of the two paradigms may
provide better generalization and training performance. Our
proposed architecture of hybrid recurrent neural networks may
also have the capability of learning higher order dependencies
and one does not need to fix the number of states as in the
case of HMMs.

In this paper, we designed a new architecture by combining
the structural similarities and the first order equations of
Hidden Markov Models and Recurrent Neural Networks
and developed a gradient descent algorithm using real time
recurrent learning algorithm along with the mathematical proof
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and implemented on automata theory as a sample testbeds and
a protein classification problem of bioinformatics application.

The rest of this paper is organised as follows. In section
II, we explained the models, methods and frameworks used in
the developed model. In Section III, the mathematical proof of
the proposed hybrid architecture has been presented. In Section
IV, the gradient descent algorithm has been explained using
the real time recurrent learning of RNN. In Section V, the
derived hybrid HMM-RNN algorithm is implemented to learn
a deterministic finite state automata and presented the results.
Finally, Section VI concludes the paper with the scope for
further research directions.

II. METHODS AND MODELS

Neural networks and Hidden Markov models are mostly
used in the process of sequence recognition or pattern
recognition/classification problems. In this paper, we designed
a new architecture by taking the advantages and disadvantages
of both the models and used the advanced recurrent neural
networks as a base model to develop the knowledge based
system. The brief overview of the used methods, models and
frameworks are described below in the process of building a
hybrid HMM-RNN system.

A. Neural Networks

Artificial neural networks are loosely modelled after
biological neural systems. They learn by training from past
experience data and make generalization on unseen data.

Neural networks have been applied to many real world
problems such as speech recognition [4], bio-conservation
[6], gesture recognition [20], medical diagnostics [2]. Neural
networks learn by training on past experience using an
algorithm which modifies the interconnection weights as
directed by a learning objective for a particular application.

In this learning process, the error function must be
minimized. This minimization has to be done with respect to
the weights and bias. If a network has differential activation
functions, then the input variable of the differentiable functions
are the activations of the output units. These input variable are
the weights and bias. One can evaluate the derivative of the
error with respect to weights. These derivatives can then be
used to find the weights that minimize the error function, by
using the popular gradient descent method. For further details
on this, as well as on the gradient descent algorithm, one may
refer to [24].

Gradient descent optimization method is one of the most
popularly used back-propagation learning algorithm. It has
been proved as a very successful method in many applications.
However, this method does not converge very fast. Moreover,
the convergence to the global minimum is not always
guaranteed. Many researchers[5], [10] have attempted for
improvements to the standard gradient descent method, such
as dynamically modifying learning parameters or adjusting
the steepness of the sigmoid function. To this end, gradient
methods using second-derivatives (Hessian matrix), such as
Newton’s method, are found to be very efficient under certain
conditions [22].

In contrast to feed-forward networks, recurrent networks are
dynamical systems whose output depends on the present state
of the units in the network; learning in feedback networks
corresponds to function approximation [17]. Examples of
recurrent networks are the Hopfield net [16] with symmetric
fully connected feedback neurons with discrete states and hard
limiting activation function, and the Boltzmann machine [15]
which is a stochastic version of the discrete-time Hopfield net
with transfer function fT .

B. Recurrent Neural Networks

Recurrent networks are computational systems with
context-varying responses, i.e., they have the ability to model
two types of time-dependent behaviour: The first deals with
gradually settling into a solution for a complex set of
conflicting constraints such as pattern completion, whereas the
second concerns the modelling of pattern sequences. Recurrent
networks have been successfully applied to problems ranging
from formal grammars, speech and image recognition to time
series prediction [8], [12].

Recurrent networks generally use some delayed output to
calculate the current activation. Some represent this delayed
copy explicitly by means of context units, for example Jordan
and Elman networks, whereas others employ an implicit signal
delay mechanism [18]. Examples of the latter are Hopfield
networks, Boltzmann machines and second-order networks
[13].

Hidden
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Output (t)

Input (t)Context (t)

Output

Input Context

Output

Context Input
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(d)(c)
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Output
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Fig. 1 Architectures of Recurrent Neural Networks

Fig. 1 represents recurrent networks architectures of Elman
(a), Jordan (b), Robinson and Fallside (c), and Williams and
Zipser (d). Dashed lines indicate feedback connections.

C. Training Methods

1) Backpropagation through Time: Backpropagation is the
most widely applied learning algorithm for both feed-forward
and recurrent neural networks. Backpropagation employs
gradient descent to minimize the squared error between the
networks output values and desired values for those outputs.
The learning problem faced by backpropagation is to search
a large hypothesis space defined by weight values for all the
units of the network. Error is propagated from the output layer
back to the hidden layers from which the weights are updated.

Backpropagation is used for training feed-forward networks
while backpropagation through time (BPTT) is employed for
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training recurrent neural networks [27]. The BPTT is the
extension of backpropagation algorithm. The general idea
behind BPTT is to unfold the recurrent neural network in time
so that it becomes a deep multilayer feed-forward network.
This can be done by adding a layer for each time step. When
unfolded in time, the network has the same behaviour as a
recurrent neural network for a finite number of time steps.

2) Real Time Recurrent Learning:
Backpropagation-through-time uses the backward propagation
of error information to compute the error gradient used in
the weight update. An alternative approach for computing
the gradient is to propagate the error gradient information
forward. Real-time recurrent learning (RTRL) is a real time
learning algorithm which updates the weights at the end
of each sample string presentation with a gradient descent
weight update rule. The algorithm computes the derivatives of
states and outputs with respect to all weights as the network
processes the sequence during the forward step [29]. There is
no unfolding performed or necessary for real time recurrent
learning.

In RTRL, the weights can be incremented on-line or at the
end of the whole input sequence. Because on-line updating is
possible, the RTRL algorithm can deal with input sequences
of arbitrary length and does not require memory proportional
to the length of input sequence. It allows recurrent networks
to learn tasks that require retention of information over time
periods having either fixed or indefinite length.

D. Hidden Markov Models
As mentioned in [21], Hidden Markov model (HMM)

describes a process, which goes through a finite number
of states whilst generating a signal of either discrete or
continuous nature. The model probabilistically links the
observed signal to the state transitions in the system.

A HMM is parameterized through a matrix of transition
probabilities between states and output probability
distributions for observed signal frames given the internal
process state. These probabilities are used in the algorithms
that are used for achieving the desired results. A typical way
to combine HMMs and neural networks is to replace the
Gaussian density function estimates of emission probabilities
by neural networks.

Hidden Markov Models (HMM) are stochastic methods to
model temporal and sequence data. They are especially known
for their application in temporal pattern recognition such
as speech, handwriting, gesture recognition, part-of-speech
tagging and bioinformatics(Modelling of Protein domains,
probabilistic sequence alignment, DNA binding site modelling
and gene finding).

In a regular Markov model, the state is directly visible to the
observer, and therefore the state transition probabilities are the
only parameters. In a hidden Markov model, the state is not
directly visible, but output, dependent on the state, is visible.
Each state has a probability distribution over the possible
output tokens. Therefore the sequence of tokens generated by
an HMM gives some information about the sequence of states.

Notation: Traditionally, HMMs have been defined by the
following quintuple where, N is the number of states for

the model M is the number of distinct observations symbols
per state, i.e. the discrete alphabet size. A is the NxN state
transition probability distribution given in the form of a
matrix A = aij B is the NxM observation symbol probability
distribution given in the form of a matrix B = bj(k) p is the
initial state distribution vector p = pi. Note that, if we opt out
the structure parameters M and N we have the more often used
compact notation: lambda= (A,B,p)

Fig. 2 Hidden Markov Model Architecture

E. Hybrid Systems

Hybrid systems combine strengths of at least two intelligent
system paradigms. Examples of hybrid systems include,
symbolic connectionist learning, evolutionary neural learning,
neural expert systems, neuro-fuzzy systems.

F. Symbolic Connectionist Learning Framework

The general paradigm of symbolic connectionist learning
includes the combination of symbolic knowledge in neural
networks for better training and generalization performance
[1], [9]. In connectionist representation, the approach of using
neural networks includes initializing of neural network with
small random values and training it using some optimization
methods such as gradient descent and genetic algorithms
on some known data to perform a certain task. During
the entire process, the knowledge remains hidden in the
networks adaptable connections, hence the name connectionist
representation. The connectionist representation is shown in
the Fig.3.

The paradigm in the connectionist representation can be
enriched with symbolic knowledge by initializing a network
with prior knowledge, i.e., the initial domain theory, prior to
training. A translation of information from a symbolic into
a connectionist representation is required. This is done by
programming subset of weights in the network prior to training
instead of choosing small random values. The programmed
weights define a starting point in weight space for a search of
a solution during training. Examples of this approach include
pre-structuring a network with boolean concepts and imposing
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Fig. 3 Knowledge based symbollic connectionist framework

rotation variance in neural networks for image recognition [3],
[9], [26].

Fig. 3 represents a new framework for combining symbolic
and neural learning. The use of neural networks for knowledge
refinement consists of (i) insertion of prior knowledge known
as initial domain theory into a neural network, (ii) refinement
of knowledge through training a network on examples, and
(iii) extraction of learnt knowledge from a trained network in
symbolic form, known as refined domain theory.

III. MATHEMATICAL PROOF OF THE DESIGNED
ARCHITECTURE

Consider the equation of the forward procedure for the
calculation of the probability of the observation O given the
model, thus in HMM is given by

αt
j =

((
N∑
i

αt−1
i aij

)
· bj(ot)

)
, (1)

where N is the number of hidden states in the HMM, a is the
probability of making a transition from state i to j and bj(o

t)
is the Gaussian distribution for the observation at time t. The
calculation in (1) is inherently recurrent with resembles to the
recursion of recurrent neural networks as shown in (2)

xt
i = f

⎛
⎝ N∑

j

xt−1
j wji

⎞
⎠ , (2)

where f(·) is a non-linearity as sigmoid, N the number of
hidden neurons and wji the weights connecting the neurons
with each other and multiplied with the input nodes.

The dynamics of first-order recurrent neural network is
given by

yj(t) = f

(
N∑
i=1

wjixi(t) +

M∑
i=1

wjici(t)

)
. (3)

ci(t+ 1) = g

⎛
⎝∑

j

wijyj(t)

⎞
⎠ , (4)

where wji represent their corresponding weights and g(·) is a
sigmoidal discriminant function.

Let us combine (1) with (2) and (4) to form a hybrid
architecture. We are replacing the subscript j in bj(o

t) which
denotes the state by time t in hidden Markov models -

to incorporate the feature into recurrent neural networks.
Hence, the dynamics for the hybrid recurrent neural networks
architecture is given by

yj(t) =

[
f

N∑
i=1

wjixi(t) +

[
M∑
i=1

wjici(t)

]
bt−1(O)

]
, (5)

where bt−1(O) is the Gaussian distribution. Note that the
subscript in bt−1(O), i.e., time t, in (5) is different from the
subscript for Gaussian distribution in (1). The dynamics of
hidden Markov models and recurrent networks varies in this
context; however, we can adjust the parameter for time t as
shown in (5) in order to map hidden Markov models into
recurrent neural networks. For a single input, the univariate
Gaussian distribution is given by

bt(O) =
1√
2πσ

exp

(
−1

2

(O − μ)2

σ2

)
, (6)

where O is the observation at time t, μ is the mean and σ2
i

is the variance. Similarly, for the discrete inputs, the Gaussian
Distribution using histograms is defined as

Observation at time t =
No. of observations occurred at time t

Total no. of observations
(7)

Finally, the observation probabilities for discrete case is
calculated as frequency of these inputs.

For continuous inputs, we define the Gaussian Mixture
Models from [7] which is a parametric probability density
function and represented as weighted sum of Gaussian
component densities and it is given by:

bj(ot) =
M∑

m=1

CjmN (ot;μjm,Σjm), (8)

where (x, μ, U), denotes a D-dimensional normal density
function of mean vector μ and covariance matrix U and M
is the number of mixture components for the distribution,
and Cjm, μjm and Σjm are a weight, a L-dimensional mean
vector, and a L{x}L covariance matrix of mixture component
m of state i, respectively.

Mixture weights Cjm satisfy the following stochastic
constraint

∑M
m=1 Cjm = 1, Hence, bi(o)′s are normalized as

probability density function.
A Gaussian distribution (o, μjm,Σjm) of each component

is defined by

bt(O) =
1

2πd/2|Σ|1/2 exp

[
−1

2
(O − μ)tΣ−1(O − μ)

]
, (9)

where O is a d-component column vector, μ is a d-component
mean vector, σ is a d× d covariance matrix, respectively.

We designed the hybrid HMM-RNN architecture based
on the structural similarities of Hidden Markov Model and
Recurrent Neural Network and presented in Fig. 4 and it shows
how the Gaussian distribution for hidden Markov model is
mapped into hybrid recurrent neural networks.

Fig. 4 represents the newly developed and designed
architecture of a hybrid HMM-RNN. The dashed lined
indicates that the architecture can represent more neurons in
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Fig. 4 Hybrid: Hidden Markov Model-Recurrent Neural
Network Architecture

hidden and input layer if required. The output of the Gaussian
is further multiplied with the output of the neurons in the
hidden layer. Note that one Gaussian distribution will be
used irrespective of the number of neurons in hidden and
input layer. Hence, by combining and representing the forward
algorithm of HMM (1) in terms of RNN (2) and taking the
derivative with respect to aij , we get

∂

∂aij
(αt

j) =

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)
bj(o

t)

]

=

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)]
bj(o

t)

=

[
N∑
i=1

∂

∂aij

(
αt−1
1 a1j + · · ·+ αt−1

n anj
)]

bj(o
t)

(10)

Now

∂

∂a1j
(αt−1

1 a1j) =

[
∂

∂a1j

(
αt−1
1 a1j

) ∂a1j
∂aij

]
bj(o

t),

⇒ ∂

∂a1j
(αt−1

1 a1j) =

{
∂

∂a1j

(
αt−1
1 a1j

)
1 if i = 1

0 if i �= 1,

⇒ ∂

∂a1j
(αt−1

1 a1j) =
∂

∂a1j
(αt−1

1 a1j)

= αt−1
1

∂

∂a1j
a1j

= αt−1
1 .

Similarly,
∂

∂a2j
(αt−1

2 a2j) = αt−1
2 .

Hence

∂

∂aij
(αt

j) =
[
αt−1
1 + αt−1

2 + ..+ αt−1
N

]
bj(o

t),

∂

∂aij
(αt

j) =

[
N∑
i=1

∂

∂aij

(
αt−1
i aij

)]
bj(o

t)

=

[
N∑
i=1

αt−1
i

]
bj(o

t). (11)

In the case of training strings of certain lengths representing
finite automaton, a univariate Gaussian for one dimensional
input will be used as shown in (6). For real world applications
where multiple dimensions are involved, multivariate Gaussian
function would be used instead as shown in (8).

IV. REAL TIME RECURRENT LEARNING FOR THE HYBRID
HMM-RNN SYSTEM

We presented a gradient descent learning algorithm which is
based on the Williams and Zipser’s real time recurrent learning
(RTRL) algorithm [28] of RNN:

In deriving a gradient-based update rule for recurrent
networks, we make network connectivity highly
unconstrained. We simply suppose that we have a set
of input units, I = xk(t), 0 < k < m, and a set of other units,
U = yk(t), 0 < k < n, which can be hidden or output units.
To index an arbitrary unit in the network we can use

zk(t) =

{
xk(t)) if k ∈ I,

yk(t)) if k ∈ U.
(12)

Let W be the weight matrix with n rows and n+m columns,
where wij is the weight to unit i (which is in U ) from unit
j (which is in I or U ). Units compute their activations in the
now familiar way, by first computing the weighted sum of
their inputs:

netk(t) =
∑

I∈U�I

wkIzI(t), (13)

netk(t) =
∑

I∈U�I

wkIzI(t) bt(O). (14)

Here bt(o) got two cases:

Case - 1:

bt(O) =
1√
2πσ

exp

[
−1

2

(O − μ)2

σ2

]
. (15)

Case - 2:

bt(O) =
1

2πd/2|Σ|1/2 exp

[
−1

2
(O − μ)tΣ−1(O − μ)

]
, (16)

where the only new element in the formula is the introduction of
the temporal index t. Units then computes some non-linear function
of their net input

yk(t+ 1) = fk [netk(t)] (17)

Usually, both hidden and output units will have non-linear
activation functions. Note that external input at time t does not
influence the output of any unit until time t+1. The network is thus
a discrete dynamical system.

Let T (t) be the set of indices k in U for which there exists a
target value dk(t) at time t. We are forced to use the notation dk
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instead of t here, as t now refers to time. Let the error at the output
units be

ek(t) =

{
dk(t)− yk(t) if k ∈ T (t),

0 otherwise.

and define our error function for a single time step as

E(τ) = −1

2

∑
k∈U

[ek(τ)]
2 .

The error function we wish to minimize is the sum of this error over
all past steps of the network

Etotal(to, t1) =

t1∑
τ=t0+1

E(τ).

Now, because the total error is the sum of all previous errors and the
error at this time step, so also, the gradient of the total error is the
sum of the gradient for this time step and the gradient for previous
steps

�wEtotal(to, t+ 1) = �wEtotal(to, t) + �wE(t+ 1).

As time series is presented to the network, we can accumulate the
values of the gradient, or equivalently, of the weight changes. We
thus keep track of the value

� wij(t) = −μ
∂E(t)

∂wij
.

After the network has been presented with the whole series, we alter
each weight wij by

t1∑
t=t0+1

� wij(t). (18)

We therefore need an algorithm that computes

−∂E(t)

∂wij
= −

∑
k∈U

∂E(t)

∂yk(t)

∂yk(t)

∂wij
=

∑
k∈U

ek(t)
∂yk(t)

∂wij
,

at each time step t. Since we know ek(t) at all times (the difference
between our targets and outputs), we only need to find a way to
compute the second factor ∂yk(t)

∂wij
.

Derivation of ∂yk(t)
∂wij

:
From (17) and (18) we get

∂yk(t+ 1)

∂wij
= fk [netk(t)]

[ ∑
I∈U�I

wkI
∂yI(t)

∂wij
+ δikzj(t)

]
, (19)

where δik is the Kronecker delta

δik =

{
1 if i = k,

0 otherwise.

Because input signals do not depend on the weights in the network,

∂yI(t)

∂wij
= 0 for i ∈ I,

Equation (19) becomes

∂yk(t+ 1)

∂wij
=

[
fk(netk(t))

[ ∑
I∈U�I

wkI
∂yI(t)

∂wij

]
bt(O) + δikzj(t)

]
.

(20)
This is a recursive equation. Because we have assumed that our
starting state (t = 0) is independent of the weights, then we have

∂yk(t0)

∂wij
= 0.

These equations hold for all. We, therefore, need to define the values

pkij(t) =
∂yk(t)

∂wij
,

for every time step t and all appropriate i, j and k. We start with the
initial condition

pkij(t) = 0, (21)

and compute at each time step along by substituting (11) from Section
III, we get

pkij(t+ 1) =

[
fk(netk(t))

[∑
I∈U

wkIp
I
ij(t)

]
bt(O) + δikzj(t)

]
.

(22)
The algorithm then consists of computing, at each time step t, the
quantities pijk(t) using (21) and (22) and then using the differences
between targets and actual outputs to compute weight changes

� wij(t) = μ
∑
kinU

ek(t)p
k
ij(t), (23)

and the overall correction to be applied to wij is given by

� wij(t) =
t1∑

t=t0+1

� wij(t). (24)

V. LEARNING DETERMINISTIC FINITE STATE AUTOMATA
USING HYBRID HMM-RNN ALGORITHM

In the current study, we investigate to show how finite automaton
can be used to train recurrent neural networks making them suitable
for modeling dynamical systems. We will train first-order recurrent
neural networks on deterministic finite-state automata to show their
knowledge acquisition. Finally, we will show how our designed
new hybrid recurrent neural networks architecture based on hidden
Markov models can train and represent finite automaton making them
suitable for modelling dynamical systems.

A. Recurrent Neural Networks as Models of Computation
Recurrent neural networks are systems that model dynamical

processes. Formal languages such as finite state automata have
characteristics of dynamical systems. Using finite state automata we
can show that recurrent neural networks can learn and represent
dynamical systems. Recurrent neural networks can be trained with
strings whose labels are assigned by deterministic finite state
automata.

We generate the training data set by presenting string length of 1
to 10 to corresponding finite automaton which labels the output with
each corresponding string. Similarly, we generate a testing data set
for string lengths from 1 to length 15. A working set contains patterns
of increasing order of lengths. The networks trains on each working
set of a number of training epochs until the network converges. The
training is terminated when the network performs satisfactorily on the
entire training set or iterates through all working sets of the training
set.

Fig. 5 represents a ten state deterministic finite sate automata
which is used for training the hybrid recurrent network architecture
interpreted by hidden Markov models.

An example of 10 State deterministic finite state automata is
presented in Fig. 5. Double circles show accepting states. Rejecting
states are shown by single circles while state 1 is the automaton start
state. The training and testing set is obtained upon presentation of
strings to this automaton which gives an output, i.e., a rejecting or
accepting state depending on the state where the last sequence of the
string was presented. For example, the output of a string of length
10, i.e., aaaabaaaba in alphabet {0,1} is state 7. It is an accepting
state, therefore the output is 1.
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Fig. 5 Ten state deterministic finite state automata

B. Deterministic Finite State Automata Training
To show the effectiveness and efficiency of the proposed algorithm

of the hybrid architecture, the following tests were performed.
We generate the training data set by presenting string length of

1 to 10 to a deterministic finite automaton. The deterministic finite
automaton labels the output on each string it takes as input depending
on the state where the final symbol of the string was presented.
Similarly, we generate a testing data set for string lengths from 1
to length 15. We obtain a training data set with 2048 string samples
and a testing data set of 65535 strings.

We used the first order recurrent neural networks architecture with
the following topology: 2 neurons in the input layer which represents
the string input and 1 neuron in the output layer representing the
string output. We used a learning rate value of 0.3, momentum rate
value of 0.9, sigmoid sensitivity rate of 11.5 and ran experiment
with 5, 10 and 15 neurons in the hidden layer along with the
hidden Markov model Parameters (No. of observations = 10, No.
of observation symbols = 2, No. of States = 3).

While deriving the equations for Hybrid HMM-RNN architecture,
we finally ended up with the initial values, weights and observation
probabilities of the network. We calculated the training and
generalization performances of the data ie., it has correctly
classified/learned all the strings in the training and testing sets. The
network is presented with data in the testing set and the performance
of the networks is determined upon its generalization on the test data.
The tables show the results obtained for single order RNN and Hybrid
HMM-RNN.

Here, we carried out two experiments
• Case 1: Simple DFA learning using RNN, and
• Case 2: Hybrid HMM-RNN architecture implementation of

DFA.
In the first case, the training and generalization performances were
quite good and achieved an average of 85 percent performance using
simple RNNs, i.e., It has been shown that it correctly classifies all the
strings in the training set which means the total number of accepted
and rejected strings in the training and the testing sets and in the
second case i.e., using the Hybrid HMM-RNN architecture, initially
we got zero performance with -1 to 1 and -3 to 3 weight ranges
and when we increase the number of hidden units from 5, 10, 15
and weight ranges between -5 to 5, -7 to 7 we got an average of 83
percent on the performances.

C. Learning Deterministic Finite State Automata
Tables I and II show the training and generalization performances

of single order RNN and hybrid HMM-RNN architecture with
different number of neurons in the input and hidden layers, weight
ranges and number of training cycles for learning deterministic finite
state automaton.

Finally, in order to reveal that the hybrid recurrent neural network
has good recognition/classification and generalization performance
to solve the first order and hybrid HMM-RNN problems, the results

TABLE I
SINGLE ORDER RECURRENT NEURAL NETWORK

Input Hidden Training Training Testing Generalization
Neurons Neurons Cycles MSE MSE MSE

3 5 50 0.194652 92.9169 87.9641

3 5 101 0.177034 78.9566 70.6649

3 5 500 0.150888 85.9326 82.0357

5 10 1000 0.0822267 83.0292 81.4205

5 10 1500 0.0886557 72.4865 71.4137

5 10 2000 0.0854211 60.1392 50.3495

10 15 2500 0.0787231 79.2631 74.1746

10 15 5000 0.184652 68.5339 64.9201

TABLE II
LEARNING DETERMINISTIC FINITE STATE AUTOMATION USING HYBRID

HMM-RNN

Hidden Weight Training Training Generalization
Neurons Range Cycles Performance Performance

1 -1 to +1 100 0% 0%

3 -3 to +3 100 0% 0%

5 -5 to +5 53 84.5% 79.3%

10 -7 to +7 31 82.2% 81.3%

15 -15 to +15 9 0% 0%

show that recurrent neural networks can learn deterministic finite state
automata by means of gradient descent learning. They show good
training and generalization performance compared to other models
and it is also seen that the number of training epochs in the last
cycle vary for different neural networks topologies depending on the
number of neurons in the hidden layer.

VI. CONCLUSION

We have seen how the strengths of intelligent system paradigms
can be combined into hybrid systems. We have discussed the
combination of neural networks with symbolic knowledge in
symbolic connectionist learning framework. We have shown and
discussed in detail our proposed hybrid HMM-RNN system and
discussed the possible training methods of hybrid recurrent neural
networks. Finally, we demonstrated the performance of the developed
hybrid Hidden Markov Model-Recurrent Neural Network system by
learning a deterministic finite state automata.

The next paper follows on protein classification using the hybrid
HMM-RNN architecture and for further future research, the hybrid
algorithm can be derived using the Long Short Term Memory
networks or Decoupled Extended Kalman Filters to minimize the
gradient error.
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