
 

 

  
Abstract—Understanding the cell's large-scale organization is an 

interesting task in computational biology. Thus, protein-protein 
interactions can reveal important organization and function of the 
cell. Here, we investigated the correspondence between protein 
interactions and function for the yeast.  We obtained the correlations 
among the set of proteins. Then these correlations are clustered using 
both the hierarchical and biclustering methods. The detailed analyses 
of proteins in each cluster were carried out by making use of their 
functional annotations.  As a result, we found that some functional 
classes appear together in almost all biclusters. On the other hand, in 
hierarchical clustering, the dominancy of one functional class is 
observed. In the light of the clustering data, we have verified some 
interactions which were not identified as core interactions in DIP and 
also, we have characterized some functionally unknown proteins 
according to the interaction data and functional correlation. In brief, 
from interaction data to function, some correlated results are noticed 
about the relationship between interaction and function which might 
give clues about the organization of the proteins, also to predict new 
interactions and to characterize functions of unknown proteins.  
 

Keywords—Pair-wise protein interactions, DIP database, 
functional correlations, biclustering.  

I. INTRODUCTION 
ROTEINS are large molecules responsible for executing 
and regulating various biological functions. Although 

some protein structures can be functional alone, most of them 
have to associate with other proteins to act in the biological 
processes. In other words, they perform their functions by 
interacting with other proteins. The combination of these 
different interactions in the organisms results in biological 
processes. Antigen-antibody recognition, enzyme substrate 
binding, DNA replication and transcription, RNA splicing and 
metabolic cycles are some examples of biological processes 
containing protein-protein interactions. The complex functions 
in the biological systems are a result of the large network of 
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the proteins formed by pair wise protein – protein interactions. 
Thus, the network of interactions between the proteins 
increases the understanding of protein functions and this 
network controls the lives of cells [1]. Moreover, protein 
interaction networks provide functional information about the 
uncharacterized proteins and remote similarities between 
proteins [2].  

Interactions of the proteins are likely to correlate with the 
functional properties of the proteins. Protein interaction maps 
are generally used to uncover functionally unknown proteins 
[1]. Generally, if two proteins interact directly they are likely 
to be involved in the same biological process or pathway [3]. 

Protein-protein interactions are obtained from experimental 
results [4,5] and also from databases (MIPS, DIP, BIND, 
GRID and Yeast Protein Database) [6,7,8,9,10]. The 
databases, which catalog the interactions between the proteins, 
provide quick access to the experimental interaction data and 
also to the large scale properties of these biological networks. 
One of the interaction databases is the Database of Interacting 
Proteins (DIP) [7,11]. In addition to documenting 
experimentally determined pair wise physical interactions, 
DIP combines information from a variety of sources to create 
a single, consistent set of protein-protein interactions. The 
data within the DIP can be extracted both manually and 
computationally [7]. DIP interaction participating proteins 
have a special identity number as “DIP:nnnN”.  Besides this 
accession number, DIP provides cross-references to the three 
major sequence databases, SWISSPROT, PIR and GenBank. 
By the help of the cross references from DIP to other 
sequence databases, it is possible to obtain information about 
general aspects of the proteins. In this way, from the pair wise 
interaction data in DIP, the functional correlation of two 
interacting proteins can be found by the cross-references 
[7,11]. Because experimental interaction data comes with false 
negatives, we used core interactions in our study [protein 
function connectivity]. CORE interaction means that the 
interaction data verified by one or more computational and 
experimental verification methods [7,11]. 

Clustering of the proteins in an interaction network can 
depend on one or more than one properties like pair wise 
interaction data, evolutionary data or functional description of 
the proteins. The clustering algorithms deal with the 
similarities between genes or proteins across all conditions. 
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Biclustering takes also the same conditions matrix as an input 
and tries to find statistically significant sub matrices called 
biclusters. Generally, a gene or a protein has many different 
functions. Its similarity to other genes or other proteins can be 
limited to limited set of conditions. The advantage of the 
biclustering approach is the fact that genes or proteins which 
behave similarly under a subset of the conditions but does not 
share common behavior under other conditions [12].  

 
Fig. 1 general representation of the difference between clustering 

and biclustering. 
 

Clustering of the protein data set is significant to 
characterize the functionally unknown proteins or to discover 
new interactions and to verify putative interactions. In this 
way, protein clusters give information about the organization 
of the network and about the most important node in the 
network both from functional side and interaction side [1].   

In this study, in order to analyze the functional correlations 
and organization of the proteins, we started with the 
interaction data in DIP database. We used the contact matrix 
to represent all pair wise interactions in the yeast interaction 
network. After obtaining the pair wise cross correlations 
between the proteins and clustering of them, we continued 
with functional description of the proteins in each cluster. For 
this purpose, Gene Ontology project [13] is used to annotate 
the functional correspondence. In our work, we analyzed 
experimental interaction data in yeast obtained from DIP in a 
computational way. As a result, we verified some putative 
interactions and also we predict the functions of some 
functionally unknown proteins.  

Our work can give some clues about the relationship 
between interaction and function, and also it predicts 
unknown protein-protein interactions in the yeast protein 
network.  

II. METHODS AND RESULTS 
 

The main focus of this paper is to find the set of correlated 
proteins in the protein-protein network of S. cerevisiae; in this 
way, to observe the correlation between the pair wise physical 
interactions between S. cerevisiae proteins and functional 
organization between them. For this purpose, a novel method 
is used in order to find the cross correlations between the S. 
cerevisiae proteins. The flowchart of the observation process 
is shown in Figure 2. 

 
Fig. 2 the flowchart of the project to obtain the correspondence 

between function and interaction. 
 

The used pair wise interaction data set was obtained from 
the DIP in December 11, 2005. The data set contains the pair 
wise CORE interaction (verified one or more than one 
computational or experimental method) data of the yeast 
proteins. In the data set, there are totally 2635 proteins and 
6342 core interactions observed among these proteins. 

The network of protein interactions are represented as an 
undirected graph with proteins as nodes and interactions as 
undirected edges [2]. In this paper, we utilized from the graph 
method used by [14,15,16] to analyze the protein structure and 
dynamics. A modified version of the same method has been 
used also for backbone clustering and structure similarity [17]. 
In the algorithm of the project, firstly, the pair wise protein-
protein interaction data available in DIP for yeast is 
rearranged to prepare a contact matrix to represent the 
interaction data among the proteins. For this purpose, each 
protein is referenced to an integer identifier. The protein 
identifiers are also used as indexes to form the contact matrix 
(A). By using the model below, the contact matrix is prepared. 
According to this model, it is controlled whether the protein 
(i) interacts with another protein (j) or not. If i interacts with j, 
1 is inserted at the ijth element of the matrix, if not, 0 is 
inserted at this element. And the ith   element of the diagonal of 
the matrix A is the negative of the ith row sum [16]. 
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where ⇔  represents the interaction between two proteins. 
There are other methods to define the contact matrix or to 

cluster the protein data set. There are similar studies about the 
spectral analysis of the protein interaction network of yeast 
[18,19,20]  However, these studies are significantly different 
from our work. In our study, the diagonal of the contact 
matrix is defined as the negative of the summation of that row. 
Also, the other difference is the clustering method, the 
biclustering (hierarchical clustering is also used as a trial). In 
other words, a  protein in our data set can be a member of 
more than one cluster. Our contact matrix is singular and all 
non zero eigenvalues of this matrix are negative. 92 of all 
eigenvalues are zero. If the number of zero eigenvalues is 
high, the connectivity of the nodes in the network is less. It 
has been observed in Gaussian Network Model and 
Anisotropic Network Model to study protein structure 
[14,15,16].  
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Fig. 3 eigenvalue distribution of the contact matrix obtained from 

protein interaction data of yeast. 
 

If there are N proteins in the interaction network, then the 
contact matrix is NxN in size and has N eigenvalues and N 
corresponding eigenvectors. Also, the inverse of the contact 
matrix gives the cross correlation between proteins. However, 
it should be noted that the determinant of the matrix A is zero. 
Because the contact matrix is singular and do not have 
inverse, the pseudo inverse of the matrix is taken. To find the 
pseudo inverse, contact matrix (A) is decomposed by singular 
value decomposition. For this purpose, contact matrix can be 
written as in Equation(2); 

 
TVUA ⋅Σ⋅=                 (2)  

where Σ  is a diagonal matrix and contains absolute values 
of eigenvalues.  

The pseudo inverse (A+) of a matrix is a generalization of 
the inverse matrix and includes all modes.  The 
computationally simplest way to calculate the pseudo inverse 
of a matrix is using singular value decomposition (SVD). If 

TVUA ⋅Σ⋅=  is the singular value decomposition of A, 

then the the psuedoinverse of A is TUVA ⋅Σ⋅= ++ . For a 
diagonal matrix such as Σ, which consists of the singular 
values of matrix A, the pseudoinverse of this diagonal matrix 
is the reciprocal of each non-zero element on the diagonal [7].  

The contact matrix can also be represented by spectral 
theorem as in Equation(3); 

 
UUA T ⋅Λ⋅=                (3) 

 
where U is a square matrix composed of the eigenvectors, 

and Λ  is a diagonal matrix composed of corresponding 
eigenvalues on the diagonal.  

The inverse of the contact matrix can be represented as in 
Equation(4) . 

 
111 −−− ⋅Λ⋅= UUA               (4) 

 
 Alternatively, it can be written as the sum of N – 1 

matrices like in Equation(5) of size N x N, each representing 
the contribution of a single internal mode [14,15,16].  

 
[ ]∑ ⋅⋅= −−

m

T
mmm uuA 11 λ             (5)  

 
 
The size of the contact matrix in the project is 2635 x 2635 

– because there are 2635 proteins in the dataset – and the 
sparsity of it is 0.9978, which means that 99.8 % of the matrix 
elements are zero. The sparsity pattern of the contact matrix 
for yeast core interaction data in DIP is shown in Fig. 4. 
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Fig. 4  sparsity pattern of the contact matrix for the pair wise 
interaction data where nz is the number of non zero elements. 

 
The normalized cross correlations between protein 

interactions are found by normalization of the pseudo inverse 
matrix. After taking the pseudo inverse of the contact matrix, 
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the next step is to prepare the normalized cross-correlation 
matrix between the proteins. By normalization of pseudo 
inverse matrix, the cross-correlation matrix is found. Cross-
correlations between the DIP proteins are calculated as in Eq. 
(6). The matrix C gives the normalized cross correlations 
between the proteins [14,15,16]. 
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As a result, all the diagonal elements of the cross-

correlation matrix (C) are equal to 1 which means that the 
protein (i) is 100 % correlated with itself. In the cross-
correlation matrix, the correlation value of each element 
changes between – 1 and 1.  ( -) correlation values represent 
anti-correlation between two proteins, 0 represents no 
correlation between them and (+) correlation values represents 
how much correlated are two proteins. To perform all these 
steps, Python 2.4 Programming Codes has been used.  
 

A. Hierarchical Clustering 
After calculation of the cross correlations between the 

proteins, the cross-correlation matrix has been clustered 
according to the correlation values in it. For first trial in the 
project, hierarchical clustering was used. By “clusterdata” 
function in MATLAB, the proteins were clustered 
hierarchically. This function first computes the Euclidean 
distance between pairs of objects in the correlation matrix. 
Then, it creates a hierarchical cluster tree, using the Single 
Linkage algorithm, and finally, constructs clusters from this 
hierarchical cluster tree.  

The cluster numbers are found according to the cutoff 
value. The cutoff value is a threshold for cutting the 
hierarchical tree generated by linkage into clusters [21]. The 
optimum cluster number is found by the graph “cutoff value 
vs. cluster number”, shown in Fig. 3. In the graph, while the 
cutoff value increases, the number of clusters decreases and 
goes to 1 cluster. According to this graph, the optimum cutoff 
value is chosen as 1.154. The number of clusters for this 
optimum cutoff value is 507.  

In the hierarchical clustering results, the cluster sizes are 
small; also some of them have only one member. In the 
analysis of the clusters in the functional perspective, the 
clusters which have less than and equal to 5 members are 
eliminated. As a result, cluster numbers decrease from 507 
clusters to 93 clusters. The cluster size distribution after 
elimination of the redundant clusters is shown in Fig. 6.    

 

 
 

Fig. 5 the cutoff value vs cluster number graph of hierarchical 
clustering by MATLAB. 
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Fig. 6 cluster size distribution for hierarchical clustering. This 
distribution obtained after elimination of the clusters which have less 
than or equal to 5 members. As a result, there is 93 clusters available 
coming from hierachical clustering. 

B. Biclustering 
 
Hierarchical clustering is one of the mostly used methods 

for clustering a data set in biological systems. However, in 
biological systems, a protein can function in more than one 
process. In other words, one protein can be put more than one 
cluster. Because of this situation, biclustering method seems 
more appropriate for biological systems and for clustering 
these proteins.  

Biclustering algorithm does not force the proteins to belong 
to one cluster. To bicluster the proteins in the dataset 
effectively, the EXPANDER software [22] was used. 
EXPANDER is a package for the analysis of gene expression 
data, contains various data analysis algorithm 
implementations. One of them is biclustering analysis. The 
biclustering tool of the EXPANDER uses SAMBA algorithm 
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to bicluster the data set [22]. The detailed information about 
biclustering and EXPANDER software can be found in 
http://www.cs.tau.ac.il/~rshamir/expander/expander.html.   In 
this work, the normalized cross-correlation matrix (C) is 
biclustered. Firstly, the matrix is loaded in the EXPANDER 
software, and then the SAMBA [Tanay 2004] algorithm is 
runned. As a result, there is 344 biclusters found. However, 
lots of clusters have same members at high ratios. For 
example, some biclusters have 70 % or more similarity, means 
that 70% of members of a biclusters are same with another 
bicluster. Because of this situation, the biclusters are 
associated according to their similarity ratios. As a result, for 
70 % similarity, the bicluster number decreases from 344 to 
222. The cluster size distribution after association of the 
clusters is shown in Fig. 7. 
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Fig. 7 cluster size distribution of the biclusters. This distribution 
obtained after merging of 70% identical biclusters. 
 

C. Functional Annotation of the Proteins 
 

After the correlation matrix is clustered by hierarchical 
clustering and by biclustering, the proteins in the clusters and 
biclusters are interpreted according to the molecular functions, 
whether there are functional correlations between the proteins 
in the clusters. For this purpose, each protein in the clusters 
are described with the Gene Ontology (GO) Annotations and 
analyzed whether there is functional relationship between 
them.  

GO gives consistent descriptions of gene products in 
different databases. The GO annotations describe the gene 
products from three ways: (i) cellular component is the 
component of the cell; for instance, ribosome, nucleus etc.; (ii) 
biological process is series of events accomplished by one or 
more ordered assemblies of molecular functions; for example 
cellular physiological process, RNA metabolism or signal 
transduction; (iii) molecular function describes activities, such 
as catalytic or binding activities at the molecular level. The 
GO terms goes from broad terms to more specific terms. For 
example, “binding” is a broad GO term, at the second level the 

GO term below binding, “protein binding” give more specific 
information.  Each term in GO have a unique numerical 
identifier like (GO:nnnnnnn) [13].  

The GO ID’s of each protein is found by cross references 
from DIP to GO. There is no direct way to get GO annotations 
from DIP database as shown in Fig. 8. Firstly, the cross-
reference between the DIP database and SWISSPROT is used. 
Each DIP name is changed by SWISSPROT ID’s. However, 
the SWISSPROT ID’s of 306 of the 2635 proteins in the 
dataset are not found in the cross reference between DIP and 
SWISSPROT. Then, the cross-references between the 
SWISSPROT and GO annotations are found. By this way the 
function, in which the protein participate is found for the 
proteins in each clusters.  

 
 

 
 
Fig. 8 cross – reference from DIP database to GO annotations. The 
dashed lines represents the possible ways to go from one database to 
another. The straight line represents the way used in this study to go 
from DIP to GO annotations. 
 

D. The distribution of the functional classes in the dataset 
 
The first level functions are used from GO annotations. At 

the first level GO annotations, there are 19 different function 
classes which are shown in Table 2. 12 of these functional 
categories are occupied by the proteins in the core interaction 
data set. Each protein is assigned to one or several of the 12 
functional classes.  

 
TABLE I 

THE NUMBER OF FUNCTIONS IN THE  DATASET 
GO Function (first level) ID # of proteins 

participate at that 

function 

antioxidant activity  1 6 

binding  2 1512 

catalytic activity  3 1092 

chaperone regulator activity  4 2 

chemoattractant activity  5 0 

chemorepellant activity  6 0 

energy transducer activity  7 0 

enzyme regulator activity  8 152 

molecular function unknown  9 0 

motor activity  10 12 

DIP 
Database SWISSPROT 

NCBI Gene 
ID’s 

PIR 

GO 
Annotation 
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nutrient reservoir activity  11 0 

obsolete molecular function  12 0 

protein tag  13 3 

signal transducer activity  14 41 

structural molecule activity  15 139 

transcription regulator activity  16 136 

translation regulator activity  17 37 

transporter activity  18 155 

triplet codon-amino acid ad. act. 19 0 

 
       The large amounts of the proteins in the interaction 
dataset have binding and catalytic activity as seen in Table 1. 
They are excluded from the functional categories, since they 
would over amplify the results. Also, the proteins in the data 
set are not functioning in the functional categories 
chemoattractant activity (#5), chemorepellant activity (#6), 
energy transducer activity (#7), nutrient reservoir activity 
(#11), obsolete molecular function (#12) and triplet codon-
amino acid adaptor activity (#19). When we focus on the 
functions, the proteins in the data set are occupied in the 
functional classes of antioxidant activity (#1),  chaperone 
regulator activity (#4), enzyme regulator activity (#8), motor 
activity (#10), protein tag (#13), signal transducer activity 
(#14), structural molecule activity (#15), transcription 
regulator activity (#16), translation regulator activity (#17) 
and transporter activity (#18).  
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Fig. 9  functional distribution of the all yeast proteins in the data set 

 
After each protein is described by its functional 

annotations, the hierarchical clusters and biclusters are 
checked separately, whether they are correlated or they are 
not. When the functional annotations are analyzed (excluding 
the protein binding (#2) and catalytic activity (#3), since 
because they are in all clusters at high ratios normally) 
generally almost in every bicluster the functional classes, 
enzyme regulator activity (#8), signal transducer activity 
(#14), structural molecule activity (#15), transcription 
regulator activity (#16), translation regulator activity (#17) 
and transporter activity (#18), take place as blocks. However, 
in the clusters of hierarchical clustering, these functional class 

blocks are not seen. The functional classes of binding (#2) and 
catalytic activity (#3) exists dominantly in all clusters in 
hierarchical clustering like biclusters, but we do not see the 
same functional behavior of the proteins and 6 functional 
category blocks. Generally, in hierarchical clusters, one 
functional class is dominated except the classes #2 and #3. 
Both in small hierarchical clusters and small biclusters, one 
functional class is dominant and separate from others.   To be 
more specific about it, we choose one of the 344 biclusters. 

E.  Case Studies for Analysis of the Clusters 
 
1) Bicluster #40 

 
The bicluster #40 is chosen to be observed more detailed. 

This bicluster has 350 proteins; because one protein can be 
assigned one or several functional classes, there are formed 
totally 473 functions and 84 % of these functions are in the 
class of binding (#2) and catalytic activity (#3).  

 
TABLE II  

THE FUNCTIONAL CLASSES OF THE BICLUSTER # 40. 
Functional Class # of proteins participate 

at that function 

binding  210 

catalytic activity  188 

enzyme regulator activity  15 

signal transducer activity  4 

structural molecule activity  12 

transcription regulator activity  15 

translation regulator activity  12 

transporter activity  17 

 
When binding and catalytic activity are disregarded, again 

the 6 functional groups are observed together in bicluster #40 
as in almost the rest of the data set. For biclustering results, 
we can conclude that these 6 functional groups are working 
collectively in the yeast. Because we started from interaction 
data, it can be suggested that these functional grouping of the 
proteins shows the correlation between interaction and 
function. In Figure 8, the partition of the functional categories 
in bicluster 40 is shown.  

transcription 
regulator activity

translation 
regulator activity

transporter 
actvity

enzyme regulator 
activity

signal transducer 
activity

structural 
molecule activity

enzyme regulator activity

signal transducer activity

structural molecule activity

transcription regulator
activity
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Fig. 10 the graph of the 6 functional classes of bicluster 40. 
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By the usage of the server in Yeast Genome Database 
(www.yeastgenome.org), the GO annotations tree for the 
bicluster #40 is drawn from the process side [10]. For 
bicluster #40, the biological processes are identified and we 
observed that only 2 of the 12 processes are occupied by the 
proteins in the bicluster 40 as seen in Fig. 11 which is 
physiological process and cellular process. In Figure 11, only 
the upper levels of the GO annotation tree are shown.  

 
Fig. 11 First two level GO process tree of the bicluster 40. The 

proteins in this cluster are participating into 2 processes out of 12 
first level GO processes. 

 
When the tree is examined at the low levels, we have seen 

that all of the proteins in this cluster is participating into the 
RNA metabolism. The low levels of the tree are represented 
with a simplified scheme in Figure 12. The entire of the GO 
annotation tree of this bicluster is available in 
http://home.ku.edu.tr/~ntuncbag/yeastclusters with the gene names 
at each subprocesses.  This situation shed light on the 
hypothesis that the interacting proteins in the same bicluster 
are involved in the same biological process. 

 

 
Fig. 12 General representation of the organization of the bicluster40 
at low levels. Almost all genes in this bicluster are participating in 
the RNA metabolism. The detailed and colored version of the tree 

with the gene names on it is available in  http://home.ku.edu.tr/ 
~ntuncbag/yeastclusters. 

  
2) Hierarchical Cluster #20 

 
The same procedure used for biclusters is followed also for 

the hierarchical clusters. The cluster #20 is chosen for this 
procedure. This cluster has 187 members. As seen in Table 4, 
there was only one functional class except binding and 
catalytic activity.  The functional class transcription regulator 

activity (#16) is the single category, when category #2 and #3 
are disregarded. 

TABLE III  

THE FUNCTIONAL CLASSES OF THE CLUSTER # 20. 
Functional Class # of proteins participate at 

that function 

binding  95 

catalytic activity  105 

transcription regulator activity  19 

 
The complete list of the hierarchical clusters and biclusters 

with its functional annotations is available at 
home.ku.edu.tr/~ntuncbag/yeastclusters. 
 

3) Bicluster #334 
 

In another case for analysis of the clusters in a detailed way, 
we chose a cluster to find new interactions and to characterize 
unknown proteins. For this purpose, we selected the bicluster 
#334. In the interaction network of the bicluster #334, there is 
one large and two small fully connected networks and some 
single proteins. In Figure 6, representation of the large 
network in the bicluster 334 is available. 

We verified the putative interactions according to the 
hypothesis that if the proteins are in the same bicluster, they 
possibly interact and they would function in the same process. 
In Figure 13, the blue straight edges represent the core 
interactions. The red dashed edge represents the verified 
interaction in this study between DIP: 3842 and DIP: 701N. In 
the core interaction data set, there was no interaction between 
protein DIP: 701N and DIP: 3842N, but it is given as a 
possible interaction in the DIP database. In brief, here we 
verified the interaction between the proteins 701N and 3842N 
computationally. 

 

 
Fig. 13 one of the small networks in the bicluster 334. In this study, 
the interaction between the protein 3842N - single - and the protein 
701N - in the network – is verified.  
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When we analyze the GO annotations of these single 

proteins, we see a correspondence between them. Most of 
them are processing in the transcription process. From this 
correspondence we can conclude that there are possible 
undiscovered interactions between these single proteins.  

III. CONCLUSION 
The starting point of this paper was the hypothesis that 

interacting proteins have a high probability to belong to same 
functional class. For this purpose, after obtaining cross 
correlations between yeast proteins from interaction data, two 
clustering methods were used and at the end, two different 
results were obtained. As a result of biclustering, we observed 
the collective existence of same functional classes. Moreover, 
after observation of one bicluster in the view of processes, 
dominancy of one process was observed in the entire of the 
bicluster. On the other hand, in hierarchical clustering the 
dominancy of one functional class is noticed, especially in the 
small sized clusters. Also, some unverified interactions in DIP 
are verified according to being in the same bicluster.  

In the future, after detailed analysis of the clusters and 
biclusters, more verifications and new interactions would be 
found. Moreover, the functionally unknown proteins could be 
characterized according to being with high possibility in the 
same biological process with other interacting pairs of them.   

APPENDIX 

Part A 

THE WEBSITES USED IN THE PROJECT. 
Name URL Content 

Database of 
Interacting 
Proteins (DIP) 

dip.doe-mbi.ucla.edu Pair wise protein-
protein interactions 
database. 
 

SWISSPROT www.expasy.org/sprot Sequence database 
 

Gene Ontology 
(GO) 

www.geneontology.org Describes how gene 
products behave in a 
cellular context. 
 

SGD www.yeastgenome.org Database of the 
molecular biology 
and genetics of the 
yeast Saccharomyces 
cerevisiae 
 

Expander http://www.cs.tau.ac.il/~
rshamir/expander/expand
er.html 

Biclustering tool 
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