@article{(Open Science Index):https://publications.waset.org/pdf/11337,
	  title     = {Artificial Neural Network Development by means of Genetic Programming with Graph Codification},
	  author    = {Daniel Rivero and  Julián Dorado and  Juan R. Rabuñal and  Alejandro Pazos and  Javier Pereira},
	  country	= {},
	  institution	= {},
	  abstract     = {The development of Artificial Neural Networks
(ANNs) is usually a slow process in which the human expert has to
test several architectures until he finds the one that achieves best
results to solve a certain problem. This work presents a new
technique that uses Genetic Programming (GP) for automatically
generating ANNs. To do this, the GP algorithm had to be changed in
order to work with graph structures, so ANNs can be developed. This
technique also allows the obtaining of simplified networks that solve
the problem with a small group of neurons. In order to measure the
performance of the system and to compare the results with other
ANN development methods by means of Evolutionary Computation
(EC) techniques, several tests were performed with problems based
on some of the most used test databases. The results of those
comparisons show that the system achieves good results comparable
with the already existing techniques and, in most of the cases, they
worked better than those techniques.},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {2},
	  number    = {9},
	  year      = {2008},
	  pages     = {3179 - 3184},
	  ee        = {https://publications.waset.org/pdf/11337},
	  url   	= {https://publications.waset.org/vol/21},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 21, 2008},