Search results for: Nystrom’s method.
5724 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack
Authors: Manikanta Prasad Banda, Che Hua Yang
Abstract:
Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.
Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5435723 An Intelligent Scheme Switching for MIMO Systems Using Fuzzy Logic Technique
Authors: Robert O. Abolade, Olumide O. Ajayi, Zacheaus K. Adeyemo, Solomon A. Adeniran
Abstract:
Link adaptation is an important strategy for achieving robust wireless multimedia communications based on quality of service (QoS) demand. Scheme switching in multiple-input multiple-output (MIMO) systems is an aspect of link adaptation, and it involves selecting among different MIMO transmission schemes or modes so as to adapt to the varying radio channel conditions for the purpose of achieving QoS delivery. However, finding the most appropriate switching method in MIMO links is still a challenge as existing methods are either computationally complex or not always accurate. This paper presents an intelligent switching method for the MIMO system consisting of two schemes - transmit diversity (TD) and spatial multiplexing (SM) - using fuzzy logic technique. In this method, two channel quality indicators (CQI) namely average received signal-to-noise ratio (RSNR) and received signal strength indicator (RSSI) are measured and are passed as inputs to the fuzzy logic system which then gives a decision – an inference. The switching decision of the fuzzy logic system is fed back to the transmitter to switch between the TD and SM schemes. Simulation results show that the proposed fuzzy logic – based switching technique outperforms conventional static switching technique in terms of bit error rate and spectral efficiency.Keywords: Channel quality indicator, fuzzy logic, link adaptation, MIMO, spatial multiplexing, transmit diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7405722 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty
Authors: Pulak Swain, A. K. Ojha
Abstract:
Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of E- constraint method.Keywords: Portfolio optimization, multi-objective optimization, E-constraint method, box uncertainty, robust optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6305721 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method
Authors: Masoud Mahdavi
Abstract:
During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.
Keywords: Steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6395720 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19845719 Power System Security Assessment using Binary SVM Based Pattern Recognition
Authors: S Kalyani, K Shanti Swarup
Abstract:
Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18855718 Free Vibration Analysis of Carbon Nanotube Reinforced Laminated Composite Panels
Authors: B. Ramgopal Reddy, K. Ramji, B. Satyanarayana
Abstract:
In this paper, free vibration analysis of carbon nanotube (CNT) reinforced laminated composite panels is presented. Three types of panels such as flat, concave and convex are considered for study. Numerical simulation is carried out using commercially available finite element analysis software ANSYS. Numerical homogenization is employed to calculate the effective elastic properties of randomly distributed carbon nanotube reinforced composites. To verify the accuracy of the finite element method, comparisons are made with existing results available in the literature for conventional laminated composite panels and good agreements are obtained. The results of the CNT reinforced composite materials are compared with conventional composite materials under different boundary conditions.
Keywords: CNT Reinforced Composite Panels, Effective ElasticProperties, Finite Element Method, Natural Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30125717 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19415716 Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete
Authors: Erjola Reufi, Jozefita Marku, Thomas Bier
Abstract:
Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.
Keywords: Compressive strength, polypropylene fiber, steel fiber, ultrasonic pulse velocity, volume, type of fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19375715 Improvement of Stator Slot Structure based on Insulation Stresses Analysis in HV Generator
Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi
Abstract:
High voltage generators are being subject to higher voltage rating and are being designed to operate in harsh conditions. Stator windings are the main component of generators in which Electrical, magnetical and thermal stresses remain major failures for insulation degradation accelerated aging. A large number of generators failed due to stator winding problems, mainly insulation deterioration. Insulation degradation assessment plays vital role in the asset life management. Mostly the stator failure is catastrophic causing significant damage to the plant. Other than generation loss, stator failure involves heavy repair or replacement cost. Electro thermal analysis is the main characteristic for improvement design of stator slot-s insulation. Dielectric parameters such as insulation thickness, spacing, material types, geometry of winding and slot are major design consideration. A very powerful method available to analyze electro thermal performance is Finite Element Method (FEM) which is used in this paper. The analysis of various stator coil and slot configurations are used to design the better dielectric system to reduce electrical and thermal stresses in order to increase the power of generator in the same volume of core. This paper describes the process used to perform classical design and improvement analysis of stator slot-s insulation.Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17985714 Design of Nonlinear Robust Control in a Class of Structurally Stable Functions
Authors: V. Ten
Abstract:
An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.
Keywords: Catastrophes, robust control, simulation, uncertain parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12995713 Comparison of Different Gas Turbine Inlet Air Cooling Methods
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75635712 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: Defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22955711 King Bhumibol Adulyadej’s “Learn Wisely” Concept: An Application to Instructional Design
Authors: Rossukhon Makaramani, Supanan Sittilerd
Abstract:
This study is about an application of King Bhumibol Adulyadej’s “Learn Wisely” (LW) concept in instructional design and management process at the Faculty of Education, Suan Sunahdha Rajabhat University. The concept suggests four strategies for true learning. Related literature and significant LW methods in teaching and learning are also reviewed and then applied in designing a pedagogy learning module. The design has been implemented in three classrooms with a total of 115 sophomore student teachers. After one consecutive semester of managing and adjusting the process by instructors and experts using collected data from minutes, assessment of learning management, satisfaction and learning achievement of the students, it is found that the effective SSRU model of LW instructional method comprises of five steps.
Keywords: Instructional Design, Learn Wisely Strategy, Pedagogy Learning Module, Teaching Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25415710 Applying Gibbs Sampler for Multivariate Hierarchical Linear Model
Authors: Satoshi Usami
Abstract:
Among various HLM techniques, the Multivariate Hierarchical Linear Model (MHLM) is desirable to use, particularly when multivariate criterion variables are collected and the covariance structure has information valuable for data analysis. In order to reflect prior information or to obtain stable results when the sample size and the number of groups are not sufficiently large, the Bayes method has often been employed in hierarchical data analysis. In these cases, although the Markov Chain Monte Carlo (MCMC) method is a rather powerful tool for parameter estimation, Procedures regarding MCMC have not been formulated for MHLM. For this reason, this research presents concrete procedures for parameter estimation through the use of the Gibbs samplers. Lastly, several future topics for the use of MCMC approach for HLM is discussed.
Keywords: Gibbs sampler, Hierarchical Linear Model, Markov Chain Monte Carlo, Multivariate Hierarchical Linear Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18775709 Chitosan/Casein Microparticles: Preparation, Characterization and Drug Release Studies
Authors: Selvakumar Dhanasingh, Shunmuga Kumar Nallaperumal
Abstract:
Microparticles carrier systems made from naturally occurring polymers based on chitosan/casein system appears to be a promising carrier for the sustained release of orally and parenteral administered drugs. In the current study we followed a microencapsulation technique based aqueous coacervation method to prepare chitosan/casein microparticles of compositions 1:1, 1:2 and 1:5 incorporated with chloramphenicol. Glutaraldehyde was used as a chemical cross-linking agent. The microparticles were prepared by aerosol method and studied by optical microscopy, infrared spectroscopy, thermo gravimetric analysis, swelling studies and drug release studies at various pH. The percentage swelling of the polymers are found to be in the order pH 4 > pH 10 > pH 7 and the increase in casein composition decrease the swelling percentage. The drug release studies also follow the above order.
Keywords: Chitosan/casein micro particles, chloramphenicol, drug release, microencapsulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32035708 Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent
Authors: Mu-Jen Young, Cheng-Yen Wu, Wen-Yuan Hsieh
Abstract:
Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).
Keywords: Contrast Agent, Iron Oxide Nanoparticle, Magnetic Resonance Imaging, Nanoparticle Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32175707 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7375706 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.
Keywords: Indirect Vector Control, Induction Motor, Adaptive Tabu Search, Control Design, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19395705 Tree Based Decomposition of Sunspot Images
Authors: Hossein Mirzaee, Farhad Besharati
Abstract:
Solar sunspot rotation, latitudinal bands are studied based on intelligent computation methods. A combination of image fusion method with together tree decomposition is used to obtain quantitative values about the latitudes of trajectories on sun surface that sunspots rotate around them. Daily solar images taken with SOlar and Heliospheric (SOHO) satellite are fused for each month separately .The result of fused image is decomposed with Quad Tree decomposition method in order to achieve the precise information about latitudes of sunspot trajectories. Such analysis is useful for gathering information about the regions on sun surface and coordinates in space that is more expose to solar geomagnetic storms, tremendous flares and hot plasma gases permeate interplanetary space and help human to serve their technical systems. Here sunspot images in September, November and October in 2001 are used for studying the magnetic behavior of sun.Keywords: Quad tree decomposition, sunspot image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12605704 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*
Authors: Jin Myoung Kim, Tae Ho Cho
Abstract:
Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.
Keywords: Heuristic search, key management, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16895703 Ghost Frequency Noise Reduction through Displacement Deviation Analysis
Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran
Abstract:
Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.
Keywords: Displacement deviation analysis, gear whine, ghost frequency, sound quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8245702 Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.
Keywords: Artifact, EEG, Renyi's entropy, independent component analysis, kurtosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24365701 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films
Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont
Abstract:
TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26105700 Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging
Authors: See Zi Siang, Khairul Hazrin Hashim, Harold Thwaites, Lee Xia Sheng, Ooi Wooi Har
Abstract:
The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.
Keywords: High Dynamic Range Image, Photography Workflow Optimization, Digital Negative Image, Architectural Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16255699 Computational Initial Value Method for Vibration Analysis of Symmetrically Laminated Composite Plate
Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy
Abstract:
In the present paper, an improved initial value numerical technique is presented to analyze the free vibration of symmetrically laminated rectangular plate. A combination of the initial value method (IV) and the finite differences (FD) devices is utilized to develop the present (IVFD) technique. The achieved technique is applied to the equation of motion of vibrating laminated rectangular plate under various types of boundary conditions. Three common types of laminated symmetrically cross-ply, orthotropic and isotropic plates are analyzed here. The convergence and accuracy of the presented Initial Value-Finite Differences (IVFD) technique have been examined. Also, the merits and validity of improved technique are satisfied via comparing the obtained results with those available in literature indicating good agreements.Keywords: Free Vibrations, Initial Value, Finite Differences, Laminated plates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25405698 An Approach for Blind Source Separation using the Sliding DFT and Time Domain Independent Component Analysis
Authors: Koji Yamanouchi, Masaru Fujieda, Takahiro Murakami, Yoshihisa Ishida
Abstract:
''Cocktail party problem'' is well known as one of the human auditory abilities. We can recognize the specific sound that we want to listen by this ability even if a lot of undesirable sounds or noises are mixed. Blind source separation (BSS) based on independent component analysis (ICA) is one of the methods by which we can separate only a special signal from their mixed signals with simple hypothesis. In this paper, we propose an online approach for blind source separation using the sliding DFT and the time domain independent component analysis. The proposed method can reduce calculation complexity in comparison with conventional methods, and can be applied to parallel processing by using digital signal processors (DSPs) and so on. We evaluate this method and show its availability.Keywords: Cocktail party problem, blind Source Separation(BSS), independent component analysis, sliding DFT, onlineprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16475697 Structural Damage Detection via Incomplete Modal Data Using Output Data Only
Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27075696 Simulation and Experimentation of Multibody Mechanical Systems with Clearance Revolute Joints
Authors: A.F. Haroun, S.M. Megahed
Abstract:
Clearance in the joints of multibody mechanical systems such as linkage mechanisms and robots is a main source of vibration, and noise of the whole system, and wear of the joints themselves. This clearance is an inevitable matter and cannot be eliminated, since it allows the relative motion between joint components and make them assemblage. This paper presents an experimental verification of the obtained simulation results of a slider – crank mechanism of one clearance revolute joint. The simulation results are obtained with the aid of CAD and dynamic simulation softwares, which is an effective method of simulation multibody systems with clearance joints and have many advantages. The comparison between both simulation and experimental results shows that the simulation results are so close to the experimental ones which proves the accuracy and efficiency of this method of modeling and simulation of mechanical systems with clearance joints.Keywords: CAD and dynamic simulator softwares, Clearance joints, , Experimental results, Slider – crank mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27095695 The Effects of Sodium Chloride in the Formation of Size and Shape of Gold (Au)Nanoparticles by Microwave-Polyol Method for Mercury Adsorption
Authors: Mawarni F. Mohamad, Khairul S.N. Kamarudin, Nik N.F.N.M. Fathilah, Mohamad M. Salleh
Abstract:
Mercury is a natural occurring element and present in various concentrations in the environment. Due to its toxic effects, it is desirable to research mercury sensitive materials to adsorb mercury. This paper describes the preparation of Au nanoparticles for mercury adsorption by using a microwave (MW)-polyol method in the presence of three different Sodium Chloride (NaCl) concentrations (10, 20 and 30 mM). Mixtures of spherical, triangular, octahedral, decahedral particles and 1-D product were obtained using this rapid method. Sizes and shapes was found strongly depend on the concentrations of NaCl. Without NaCl concentration, spherical, triangular plates, octahedral, decahedral nanoparticles and 1D product were produced. At the lower NaCl concentration (10 mM), spherical, octahedral and decahedral nanoparticles were present, while spherical and decahedral nanoparticles were preferentially form by using 20 mM of NaCl concentration. Spherical, triangular plates, octahedral and decahedral nanoparticles were obtained at the highest NaCl concentration (30 mM). The amount of mercury adsorbed using 20 ppm mercury solution is the highest (67.5 %) for NaCl concentration of 30 mM. The high yield of polygonal particles will increase the mercury adsorption. In addition, the adsorption of mercury is also due to the sizes of the particles. The sizes of particles become smaller with increasing NaCl concentrations (size ranges, 5- 16 nm) than those synthesized without addition of NaCl (size ranges 11-32 nm). It is concluded that NaCl concentrations affects the formation of sizes and shapes of Au nanoparticles thus affects the mercury adsorption.Keywords: Adsorption, Au Nanoparticles, Mercury, SodiumChloride.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651