Search results for: protein features.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1951

Search results for: protein features.

1741 Hydrolysis of Hull-Less Pumpkin Oil Cake Protein Isolate by Pepsin

Authors: Ivan Živanović, Žužana Vaštag, Senka Popović, Ljiljana Popović, Draginja Peričin

Abstract:

The present work represents an investigation of the hydrolysis of hull-less pumpkin (Cucurbita Pepo L.) oil cake protein isolate (PuOC PI) by pepsin. To examine the effectiveness and suitability of pepsin towards PuOC PI the kinetic parameters for pepsin on PuOC PI were determined and then, the hydrolysis process was studied using Response Surface Methodology (RSM). The hydrolysis was carried out at temperature of 30°C and pH 3.00. Time and initial enzyme/substrate ratio (E/S) at three levels were selected as the independent parameters. The degree of hydrolysis, DH, was mesuared after 20, 30 and 40 minutes, at initial E/S of 0.7, 1 and 1.3 mA/mg proteins. Since the proposed second-order polynomial model showed good fit with the experimental data (R2 = 0.9822), the obtained mathematical model could be used for monitoring the hydrolysis of PuOC PI by pepsin, under studied experimental conditions, varying the time and initial E/S. To achieve the highest value of DH (39.13 %), the obtained optimum conditions for time and initial E/S were 30 min and 1.024 mA/mg proteins.

Keywords: Enzymatic hydrolysis, Pepsin, Pumpkin (CucurbitaPepo L.) oil cake protein isolate, Response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
1740 Effect of Dietary α-Cellulose Levels on the Growth Parameters of Nile Tilapia Oreochromis niloticus Fingerlings

Authors: Keri Alhadi Ighwela, Aziz Bin Ahmad, A. B. Abol-Munafi

Abstract:

Three purified diets were formulated using fish meal, soya bean, wheat flour, palm oil, minerals and maltose. The carbohydrate in the diets was increased from 5 to 15% by changing the cellulose content to study the effect of dietary carbohydrate level on the growth parameters of Nile tilapia Oreochromis niloticus. The protein and the lipid contents were kept constant in all the diets. The results showed that, weight gain, protein efficiency ratio, net protein utilisation and hepatosomatic index of fish fed the diet containing 15% cellulose were the lowest among all groups. Addition, the fish fed the diet containing 5% cellulose had the best specific growth rate, and food conversion ratio. While, there was no effect of the dietary cellulose levels on condition factor and survival rate. These results indicate that Nile tilapia fingerlings are able to utilize dietary cellulose does not exceed 10% in their feed for optimum growth.

Keywords: Dietary cellulose, growth parameters, Nile Tilapia Oreochromis niloticus, purified diets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4699
1739 A Stochastic Approach of Mitochondrial Dynamics

Authors: Athanasios T. Alexiou, Maria M. Psiha, John A. Rekkas, Panayiotis M. Vlamos

Abstract:

Mitochondria are dynamic organelles, capable to interact with each other. While the number of mitochondria in a cell varies, their quality and functionality depends on the operation of fusion, fission, motility and mitophagy. Nowadays, several researches declare as an important factor in neurogenerative diseases the disruptions in the regulation of mitochondrial dynamics. In this paper a stochastic model in BioAmbients calculus is presented, concerning mitochondrial fusion and its distribution in the renewal of mitochondrial population in a cell. This model describes the successive and dependent stages of protein synthesis, protein-s activation and merging of two independent mitochondria.

Keywords: Mitochondrial Dynamics, P-Calculus, StochasticModeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1738 Evaluation of Systemic Immune-Inflammation Index in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A growing list of cancers might be influenced by obesity. Obesity is associated with an increased risk for the occurrence and development of some cancers. Inflammation can lead to cancer. It is one of the characteristic features of cancer and plays a critical role in cancer development. C-reactive protein (CRP) is under evaluation related to the new and simple prognostic factors in patients with metastatic renal cell cancer. Obesity can predict and promote systemic inflammation in healthy adults. BMI is correlated with hs-CRP. In this study, SII index and CRP values were evaluated in children with normal BMI and those within the range of different obesity grades to detect the tendency towards cancer in pediatric obesity. A total of one hundred and ninety-four children; thirty-five children with normal BMI, twenty overweight (OW), forty-seven obese (OB) and ninety-two morbid obese (MO) participated in the study. Age- and sex-matched groups were constituted using BMI-for age percentiles. Informed consent was obtained. Ethical Committee approval was taken. Weight, height, waist circumference (C), hip C, head C and neck C of the children were measured. The complete blood count test was performed. C-reactive protein analysis was performed. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. SII index values were progressively increasing starting from normal weight (NW) to MO children. There is a statistically significant difference between NW and OB as well as MO children. No significant difference was observed between NW and OW children, however, a correlation was observed between NW and OW children. MO constitutes the only group, which exhibited a statistically significant correlation between SII index and CRP. Obesity-related bladder, kidney, cervical, liver, colorectal, endometrial cancers are still being investigated. Obesity, characterized as a chronic low-grade inflammation, is a crucial risk factor for colon cancer. Elevated childhood BMI values may be indicative of processes leading to cancer, initiated early in life. Prevention of childhood adiposity may decrease the cancer incidence in adults. To authors’ best knowledge, this study is the first to introduce SII index values during obesity of varying degrees of severity. It is suggested that this index seems to affect all stages of obesity with an increasing tendency and may point out the concomitant status of obesity and cancer starting from very early periods of life.

Keywords: Children, c- reactive protein, systemic immune-inflammation index, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
1737 2D Gabor Functions and FCMI Algorithm for Flaws Detection in Ultrasonic Images

Authors: Kechida Ahmed, Drai Redouane, Khelil Mohamed

Abstract:

In this paper we present a new approach to detecting a flaw in T.O.F.D (Time Of Flight Diffraction) type ultrasonic image based on texture features. Texture is one of the most important features used in recognizing patterns in an image. The paper describes texture features based on 2D Gabor functions, i.e., Gaussian shaped band-pass filters, with dyadic treatment of the radial spatial frequency range and multiple orientations, which represent an appropriate choice for tasks requiring simultaneous measurement in both space and frequency domains. The most relevant features are used as input data on a Fuzzy c-mean clustering classifier. The classes that exist are only two: 'defects' or 'no defects'. The proposed approach is tested on the T.O.F.D image achieved at the laboratory and on the industrial field.

Keywords: 2D Gabor Functions, flaw detection, fuzzy c-mean clustering, non destructive testing, texture analysis, T.O.F.D Image (Time of Flight Diffraction).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1736 Development of Sleep Quality Index Using Heart Rate

Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang

Abstract:

Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.

Keywords: Sleep, sleep quality, heart rate, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1735 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
1734 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

Authors: Ali Ganoun

Abstract:

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1733 Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification

Authors: S. Hma Salah, H. Du, N. Al-Jawad

Abstract:

Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.

Keywords: Ethnicity identification, fusion, local binary patterns, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
1732 Exploring Dimensionality, Systematic Mutations and Number of Contacts in Simple HP ab-initio Protein Folding Using a Blackboard-based Agent Platform

Authors: Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo Eduardo Sánchez Gutiérrez, Pedro Pablo González Pérez

Abstract:

A computational platform is presented in this contribution. It has been designed as a virtual laboratory to be used for exploring optimization algorithms in biological problems. This platform is built on a blackboard-based agent architecture. As a test case, the version of the platform presented here is devoted to the study of protein folding, initially with a bead-like description of the chain and with the widely used model of hydrophobic and polar residues (HP model). Some details of the platform design are presented along with its capabilities and also are revised some explorations of the protein folding problems with different types of discrete space. It is also shown the capability of the platform to incorporate specific tools for the structural analysis of the runs in order to understand and improve the optimization process. Accordingly, the results obtained demonstrate that the ensemble of computational tools into a single platform is worthwhile by itself, since experiments developed on it can be designed to fulfill different levels of information in a self-consistent fashion. By now, it is being explored how an experiment design can be useful to create a computational agent to be included within the platform. These inclusions of designed agents –or software pieces– are useful for the better accomplishment of the tasks to be developed by the platform. Clearly, while the number of agents increases the new version of the virtual laboratory thus enhances in robustness and functionality.

Keywords: genetic algorithms, multi-agent systems, bioinformatics, optimization, protein folding, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1731 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1730 Effects of Boron Compounds in Rabbits Fed High Protein and Energy Diet: A Metabolomic and Transcriptomic Approach

Authors: N. Baspinar, A. Basoglu, O. Ozdemir, C. Ozel, F. Terzi, O. Yaman

Abstract:

Current research is targeting new molecular mechanisms that underlie non-alcoholic fatty liver disease (NAFLD) and associated metabolic disorders like non-alcoholic steatohepatitis (NASH). Forty New Zealand White rabbits have been used and fed a high protein (HP) and energy diet based on grains and containing 11.76 MJ/kg. Boron added to 3 experimental groups’ drinking waters (30 mg boron/L) as boron compounds. Biochemical analysis including boron levels, and nuclear magnetic resonance (NMR) based metabolomics evaluation, and mRNA expression of peroxisome proliferator-activated receptor (PPAR) family was performed. LDLcholesterol concentrations alone were decreased in all the experimental groups. Boron levels in serum and feces were increased. Content of acetate was in about 2x higher for anhydrous borax group, at least 3x higher for boric acid group. PPARα mRNA expression was significantly decreased in boric acid group. Anhydrous borax attenuated mRNA levels of PPARγ, which was further suppressed by boric acid. Boron supplementation decreased the degenerative alterations in hepatocytes. Except borax group other boron groups did not have a pronounced change in tubular epithels of kidney. In conclusion, high protein and energy diet leads hepatocytes’ degenerative changes which can be prevented by boron supplementation. Boric acid seems to be more effective in this situation.

Keywords: High protein and energy diet, boron, metabolomic, transcriptomic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1729 Using PFA in Feature Analysis and Selection for H.264 Adaptation

Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy

Abstract:

Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.

Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1728 Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1727 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)

Authors: Jiraporn Rojtinnakorn

Abstract:

ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I transmembrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish

Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1726 Production of the Protein-Vitamin Complex from Wheat Germ

Authors: Gulmira Kenenbay, Urishbay Chomanov, Tamara Tultabayeva, Aruzhan Shoman

Abstract:

Wheat germ has a balanced amino acid composition of the protein, which is well digested by enzymes in the gastrointestinal tract of humans, a high content of vitamins, minerals and unsaturated acids. Introduction components grain food products will enrich their biologically important substances, giving these products a number of valuable properties and reducing their caloric. A complex natural system of substances in foods will help replenish the body's need of essential nutrients, increasing its resistance to the harmful effects of the environment, prolong life. In this regard, there was a need for the development of production technology of protein complexes from wheat germ and then applying them in food, particularly in the dairy industry. Experimental studies were conducted to determine the number of herbal supplements on the sensory characteristics of the product. Studies have been conducted to determine the optimal process parameters of water activity and moisture content of the investigational product. 

Keywords: Wheat germ, sensory characteristics of the product, water activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1725 Physiological and Biochemical Responses to Drought Stress of Chickpea Genotypes

Authors: E. Ceyhan, A. Kahraman, M. Önder, M.K. Ateş, S. Karadaş, R. Topak, M.A. Avcı

Abstract:

The experimental design was 4 x 5 factorial with three replications in fully controlled research greenhouse in Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, University of Selcuk in the year of 2009. Determination of tolerant chickpea genotypes to drought was made in the research. Additionally, sophisticated effects of drought on plant growth and development, biochemical and physical properties or physical defense mechanisms were presented. According to the results, the primary genotypes were Ilgın YP (0.0063 g/gh) for leaf water capacity, 22235 70.44(%) for relative water content, 22159 (82.47%) for real water content, 22159 (5.03 mg/l) for chlorophyll a+b, Ilgın YP (125.89 nmol H2O2.dak-1/ mg protein-1) for peroxidase, Yunak YP (769.67 unit/ mg protein-1) for superoxide dismutase, Seydişehir YP (16.74 μg.TA-1) for proline, Gökçe (80.01 nmol H2O2.dak-1/ mg protein-1) for catalase. Consequently, all the genotypes increased their enzyme activity depending on the increasing of drought stress consider with the effects of drought stress on leaf enzyme activity. Chickpea genotypes are increasing enzyme activity against to drought stress.

Keywords: Chickpea, drought, enzyme, tolerance to drought

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1724 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
1723 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: Emotion recognition, facial recognition, signal processing, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1722 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification

Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine

Abstract:

Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).

Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1721 Identification of Binding Proteins That Interact with BVDV E2 Protein in Bovine Trophoblast Cell

Authors: Yan Ren, Fei Guo, Jun Qiao, Shengwei Hu, Hui Zhang, Yuanzhi Wang, Pengyan Wang, Jinliang Sheng, Xinli Gu, Xiaojun Liu, Chuangfu Chen

Abstract:

Bovine viral diarrhea virus (BVDV) can cause lifelong persistent infection. One reason for the phenomena is attributed to BVDV infection to placenta tissue. However the mechanisms that BVDV invades into placenta tissue remain unclear. To clarify the molecular mechanisms, we investigated the possible means that BVDV entered into bovine trophoblast cells (TPC). Yeast two-hybrid system was used to identify proteins extracted from TPC, which interact with BVDV envelope glycoprotein E2. A PGbkt7-E2 yeast expression vector and TPC cDNA library were constructed. Through two rounds of screening, three positive clones were identified. Sequencing analysis indicated that all the three positive clones encoded the same protein clathrin. Physical interaction between clathrin and BVDV E2 protein was further confirmed by coimmunoprecipitation experiments. This result suggested that the clathrin might play a critical role in the process of BVDV entry into placenta tissue and might be a novel antiviral target for preventing BVDV infection.

Keywords: Bovine viral diarrhea virus, clathrin, glycoprotein E2, yeast two-hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
1720 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze

Abstract:

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1719 ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies

Authors: Maysam Mard-Soltani, Mohamad Javad Rasaee, Saeed Khalili, Abdol Karim Sheikhi, Mehdi Hedayati

Abstract:

Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection.

Keywords: hTSH, bioinformatics, protein expression, cross reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
1718 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics

Authors: N. B. Mahesh Kumar, K. Premalatha

Abstract:

The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.

Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
1717 A Study of the Variability of Very Low Resolution Characters and the Feasibility of Their Discrimination Using Geometrical Features

Authors: Farshideh Einsele, Rolf Ingold

Abstract:

Current OCR technology does not allow to accurately recognizing small text images, such as those found in web images. Our goal is to investigate new approaches to recognize very low resolution text images containing antialiased character shapes. This paper presents a preliminary study on the variability of such characters and the feasibility to discriminate them by using geometrical features. In a first stage we analyze the distribution of these features. In a second stage we present a study on the discriminative power for recognizing isolated characters, using various rendering methods and font properties. Finally we present interesting results of our evaluation tests leading to our conclusion and future focus.

Keywords: World Wide Web, document analysis, pattern recognition, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
1716 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
1715 Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding

Authors: Pedro Pablo González Pérez, Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo EduardoSánchez Gutiérrez

Abstract:

Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.

Keywords: multi-agent systems, blackboard-based agent architecture, bioinformatics framework, virtual laboratory, protein folding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
1714 Learning to Recognize Faces by Local Feature Design and Selection

Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu

Abstract:

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Keywords: Face recognition, local feature, AdaBoost, subspace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1713 A New Approach In Protein Folding Studies Revealed The Potential Site For Nucleation Center

Authors: Nurul Bahiyah Ahmad Khairudin, Habibah A Wahab

Abstract:

A new approach to predict the 3D structures of proteins by combining the knowledge-based method and Molecular Dynamics Simulation is presented on the chicken villin headpiece subdomain (HP-36). Comparative modeling is employed as the knowledge-based method to predict the core region (Ala9-Asn28) of the protein while the remaining residues are built as extended regions (Met1-Lys8; Leu29-Phe36) which then further refined using Molecular Dynamics Simulation for 120 ns. Since the core region is built based on a high sequence identity to the template (65%) resulting in RMSD of 1.39 Å from the native, it is believed that this well-developed core region can act as a 'nucleation center' for subsequent rapid downhill folding. Results also demonstrate that the formation of the non-native contact which tends to hamper folding rate can be avoided. The best 3D model that exhibits most of the native characteristics is identified using clustering method which then further ranked based on the conformational free energies. It is found that the backbone RMSD of the best model compared to the NMR-MDavg is 1.01 Å and 3.53 Å, for the core region and the complete protein, respectively. In addition to this, the conformational free energy of the best model is lower by 5.85 kcal/mol as compared to the NMR-MDavg. This structure prediction protocol is shown to be effective in predicting the 3D structure of small globular protein with a considerable accuracy in much shorter time compared to the conventional Molecular Dynamics simulation alone.

Keywords: 3D model, Chicken villin headpiece subdomain, Molecular dynamic simulation NMR-MDavg, RMSD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
1712 Secondary Ion Mass Spectrometry of Proteins

Authors: Santanu Ray, Alexander G. Shard

Abstract:

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

Keywords: ToF-SIMS, Spectroscopic Ellipsometry, Protein, Atomic Force Microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940