Search results for: optimal contract
1469 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings
Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez
Abstract:
Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.
Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8981468 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology
Authors: Joseph C. Chen, Venkata Karthik Jakka
Abstract:
The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.
Keywords: Injection molding processes, Taguchi Parameter Design, tensile strength, shrinkage test, high-density polyethylene, HDPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8381467 An ACO Based Algorithm for Distribution Networks Including Dispersed Generations
Authors: B. Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
With Power system movement toward restructuring along with factors such as life environment pollution, problems of transmission expansion and with advancement in construction technology of small generation units, it is expected that small units like wind turbines, fuel cells, photovoltaic, ... that most of the time connect to the distribution networks play a very essential role in electric power industry. With increase in developing usage of small generation units, management of distribution networks should be reviewed. The target of this paper is to present a new method for optimal management of active and reactive power in distribution networks with regard to costs pertaining to various types of dispersed generations, capacitors and cost of electric energy achieved from network. In other words, in this method it-s endeavored to select optimal sources of active and reactive power generation and controlling equipments such as dispersed generations, capacitors, under load tapchanger transformers and substations in a way that firstly costs in relation to them are minimized and secondly technical and physical constraints are regarded. Because the optimal management of distribution networks is an optimization problem with continuous and discrete variables, the new evolutionary method based on Ant Colony Algorithm has been applied. The simulation results of the method tested on two cases containing 23 and 34 buses exist and will be shown at later sections.
Keywords: Distributed Generation, Optimal Operation Management of distribution networks, Ant Colony Optimization(ACO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091466 Optimal Criteria for Non-Minimal Phase Plants
Authors: Z. Nemec, R. Matousek
Abstract:
The paper describes the evaluation of quality of control for cases of controlled non-minimal phase plants. Control circuits containing non-minimal phase plants have different properties, they manifest reversed reaction at the beginning of unit step response. For these types of plants are developed special criterion of quality of control, which considers the difference and can be helpful for synthesis of optimal controller tuning. All results are clearly presented using Matlab/Simulink models.Keywords: control design, non-minimal phase system, optimalcriteria, power plant, heating plant, water turbine, Matlab, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20641465 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm
Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel
Abstract:
The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32091464 Optimal Choice and Location of Multi Type Facts Devices in Deregulated Electricity Market Using Evolutionary Programming Method
Authors: K. Balamurugan, R. Muralisachithanandam, V. Dharmalingam, R. Srikanth
Abstract:
This paper deals with the optimal choice and allocation of multi FACTS devices in Deregulated power system using Evolutionary Programming method. The objective is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices are simulated in this study such as UPFC, TCSC, TCPST, and SVC. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and allocation of FACTS devices in deregulated electricity market environment. The standard data of IEEE 14 Bus systems has been taken into account and simulated with aid of MAT-lab software and results were obtained.
Keywords: FACTS devices, Optimal allocation, Deregulated electricity market, Evolutionary programming, Mat Lab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23171463 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691462 Approximation Approach to Linear Filtering Problem with Correlated Noise
Authors: Hong Son Hoang, Remy Baraille
Abstract:
The (sub)-optimal soolution of linear filtering problem with correlated noises is considered. The special recursive form of the class of filters and criteria for selecting the best estimator are the essential elements of the design method. The properties of the proposed filter are studied. In particular, for Markovian observation noise, the approximate filter becomes an optimal Gevers-Kailath filter subject to a special choice of the parameter in the class of given linear recursive filters.Keywords: Linear dynamical system, filtering, minimum meansquare filter, correlated noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751461 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point
Authors: Meng Wu
Abstract:
Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the Crazyflie 2.0 is located by ultra-wideband (UWB) localization system that contains four UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between Crazyflie 2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.
Keywords: Unmanned aerial vehicle landing, ultra-wideband localization system, ultra-wideband anchor, cost function, stationary platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121460 Evaluation of Optimum Performance of Lateral Intakes
Authors: Mohammad Reza Pirestani, Hamid Reza Vosoghifar, Pegah Jazayeri
Abstract:
In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.
Keywords: Diversion structures lateral intake, multi criteria decision making, optimal design, sediment control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22271459 An EOQ Model for Non-Instantaneous Deteriorating Items with Power Demand, Time Dependent Holding Cost, Partial Backlogging and Permissible Delay in Payments
Authors: M. Palanivel, R. Uthayakumar
Abstract:
In this paper, Economic Order Quantity (EOQ) based model for non-instantaneous Weibull distribution deteriorating items with power demand pattern is presented. In this model, the holding cost per unit of the item per unit time is assumed to be an increasing linear function of time spent in storage. Here the retailer is allowed a trade-credit offer by the supplier to buy more items. Also in this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This model aids in minimizing the total inventory cost by finding the optimal time interval and finding the optimal order quantity. The optimal solution of the model is illustrated with the help of numerical examples. Finally sensitivity analysis and graphical representations are given to demonstrate the model.
Keywords: Power demand pattern, Partial backlogging, Time dependent holding cost, Trade credit, Weibull deterioration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30821458 Optimal Algorithm for Constructing the Delaunay Triangulation in Ed
Authors: V. Tereshchenko, D. Taran
Abstract:
In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.
Keywords: Delaunay triangulation, multidimensional space, Voronoi Diagram, optimal algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801457 An H1-Galerkin Mixed Method for the Coupled Burgers Equation
Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang
Abstract:
In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.
Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491456 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.Keywords: JPSO, operation, optimization, water distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471455 Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
Authors: Akbar H. Borzabadi, Omid S. Fard
Abstract:
In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.Keywords: Fredholm integral equation, Optimization method, Optimal control, Nonlinear and linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721454 Optimal Maintenance Policy for a Partially Observable Two-Unit System
Authors: Leila Jafari, Viliam Makis, Akram Khaleghei G.B.
Abstract:
In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1 which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed, illustrated by a numerical example.
Keywords: Condition-Based Maintenance, Semi-Markov Decision Process, Multivariate Bayesian Control Chart, Partially Observable System, Two-unit System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22931453 Retaining Structural System Active Vibration Control
Authors: Ming-Hui Lee, Shou-Jen Hsu
Abstract:
This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.Keywords: Active vibration control, AIEM, LQG, Optimal control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671452 Bayesian Inference for Phase Unwrapping Using Conjugate Gradient Method in One and Two Dimensions
Authors: Yohei Saika, Hiroki Sakaematsu, Shota Akiyama
Abstract:
We investigated statistical performance of Bayesian inference using maximum entropy and MAP estimation for several models which approximated wave-fronts in remote sensing using SAR interferometry. Using Monte Carlo simulation for a set of wave-fronts generated by assumed true prior, we found that the method of maximum entropy realized the optimal performance around the Bayes-optimal conditions by using model of the true prior and the likelihood representing optical measurement due to the interferometer. Also, we found that the MAP estimation regarded as a deterministic limit of maximum entropy almost achieved the same performance as the Bayes-optimal solution for the set of wave-fronts. Then, we clarified that the MAP estimation perfectly carried out phase unwrapping without using prior information, and also that the MAP estimation realized accurate phase unwrapping using conjugate gradient (CG) method, if we assumed the model of the true prior appropriately.
Keywords: Bayesian inference using maximum entropy, MAP estimation using conjugate gradient method, SAR interferometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501451 A Comparative Study of Rigid and Modified Simplex Methods for Optimal Parameter Settings of ACO for Noisy Non-Linear Surfaces
Authors: Seksan Chunothaisawat, Pongchanun Luangpaiboon
Abstract:
There are two common types of operational research techniques, optimisation and metaheuristic methods. The latter may be defined as a sequential process that intelligently performs the exploration and exploitation adopted by natural intelligence and strong inspiration to form several iterative searches. An aim is to effectively determine near optimal solutions in a solution space. In this work, a type of metaheuristics called Ant Colonies Optimisation, ACO, inspired by a foraging behaviour of ants was adapted to find optimal solutions of eight non-linear continuous mathematical models. Under a consideration of a solution space in a specified region on each model, sub-solutions may contain global or multiple local optimum. Moreover, the algorithm has several common parameters; number of ants, moves, and iterations, which act as the algorithm-s driver. A series of computational experiments for initialising parameters were conducted through methods of Rigid Simplex, RS, and Modified Simplex, MSM. Experimental results were analysed in terms of the best so far solutions, mean and standard deviation. Finally, they stated a recommendation of proper level settings of ACO parameters for all eight functions. These parameter settings can be applied as a guideline for future uses of ACO. This is to promote an ease of use of ACO in real industrial processes. It was found that the results obtained from MSM were pretty similar to those gained from RS. However, if these results with noise standard deviations of 1 and 3 are compared, MSM will reach optimal solutions more efficiently than RS, in terms of speed of convergence.
Keywords: Ant colony optimisation, metaheuristics, modified simplex, non-linear, rigid simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231450 Location Based Clustering in Wireless Sensor Networks
Authors: Ashok Kumar, Narottam Chand, Vinod Kumar
Abstract:
Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.
Keywords: Wireless sensor networks, clustering, energy efficient, localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26841449 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.
Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071448 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia
Authors: David Calderón Villegas, Thomas Kalitzky
Abstract:
Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate.
Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5981447 Periodic Control of a Wastewater Treatment Process to Improve Productivity
Authors: Muhammad Rizwan Azhar, Emadadeen Ali
Abstract:
In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.
Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081446 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations
Authors: Davod Khojasteh Salkuyeh
Abstract:
An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.
Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13621445 The Control Vector Scheme for Design of Planar Primitive PH curves
Authors: Ching-Shoei Chiang, Sheng-Hsin Tsai, James Chen
Abstract:
The PH curve can be constructed by given parameters, but the shape of the curve is not so easy to image from the value of the parameters. On the contract, Bézier curve can be constructed by the control polygon, and from the control polygon, we can image the figure of the curve. In this paper, we want to use the hodograph of Bézier curve to construct PH curve by selecting part of the control vectors, and produce other control vectors, so the property of PH curve exists.Keywords: PH curve, hodograph, Bézier curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931444 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.
Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11961443 Primer Design with Specific PCR Product using Particle Swarm Optimization
Authors: Cheng-Hong Yang, Yu-Huei Cheng, Hsueh-Wei Chang, Li-Yeh Chuang
Abstract:
Before performing polymerase chain reactions (PCR), a feasible primer set is required. Many primer design methods have been proposed for design a feasible primer set. However, the majority of these methods require a relatively long time to obtain an optimal solution since large quantities of template DNA need to be analyzed. Furthermore, the designed primer sets usually do not provide a specific PCR product. In recent years, evolutionary computation has been applied to PCR primer design and yielded promising results. In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve primer design problems associated with providing a specific product for PCR experiments. A test set of the gene CYP1A1, associated with a heightened lung cancer risk was analyzed and the comparison of accuracy and running time with the genetic algorithm (GA) and memetic algorithm (MA) was performed. A comparison of results indicated that the proposed PSO method for primer design finds optimal or near-optimal primer sets and effective PCR products in a relatively short time.
Keywords: polymerase chain reaction (PCR), primer design, evolutionary computation, particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791442 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.
Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8511441 Optimal Maintenance Clustering for Rail Track Components Subject to Possession Capacity Constraints
Authors: Cuong D. Dao, Rob J.I. Basten, Andreas Hartmann
Abstract:
This paper studies the optimal maintenance planning of preventive maintenance and renewal activities for components in a single railway track when the available time for maintenance is limited. The rail-track system consists of several types of components, such as rail, ballast, and switches with different preventive maintenance and renewal intervals. To perform maintenance or renewal on the track, a train free period for maintenance, called a possession, is required. Since a major possession directly affects the regular train schedule, maintenance and renewal activities are clustered as much as possible. In a highly dense and utilized railway network, the possession time on the track is critical since the demand for train operations is very high and a long possession has a severe impact on the regular train schedule. We present an optimization model and investigate the maintenance schedules with and without the possession capacity constraint. In addition, we also integrate the social-economic cost related to the effects of the maintenance time to the variable possession cost into the optimization model. A numerical example is provided to illustrate the model.
Keywords: Rail-track components, maintenance, optimal clustering, possession capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941440 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique
Authors: Nishant Shrivastava, D. K. Sehgal
Abstract:
In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.
Keywords: Finite element, Lagrangian, optimal stress location, serendipity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632