
Optimal algorithm for constructing the Delaunay
Triangulation in Ed

V. Tereshchenko and D. Taran

Abstract—In this paper we propose a new approach to constructing
the Delaunay Triangulation and the optimum algorithm for the case
of multidimensional spaces (d ≥ 2). Analysing the modern state,
it is possible to draw a conclusion, that the ideas for the existing
effective algorithms developed for the case of d ≥ 2 are not simple to
generalize on a multidimensional case, without the loss of efficiency.
We offer for the solving this problem an effective algorithm that
satisfies all the given requirements. But theoretical complexity of the
problem it is impossible to improve as the Worst - Case Optimality
for algorithms of solving such a problem is proved.

Keywords—Delaunay Triangulation, multidimensional space,
Voronoi Diagram, optimal algorithm.

I. INTRODUCTION

THE problem of the effective algorithm construction for
the Delaunay triangulation has been actual for a long

time already. Therefore, many approaches were offered for
her solving [1-10]. In the case of a plane the task is com-
pletely done as there is the Worst - Case Optimal algorithm
(the Fortune algorithm [11]). However, a theoretical optimal
algorithm for a general multidimensional case has not been
found yet. Therefore, except theoretical complication there is
need in practical estimations of time of algorithms’work. For
solving the given task there are several general methods and
all known algorithms work in accordance with one of them,
in particular: divide-and-conquer, based on a sweep plane
(or space), successive points addition (random incremental
method) and the direct algorithms.

One alternative method should also be noted. It lies in
the existence of the direct connection between d-dimensional
Delaunay triangulation and (d+1) - dimensional convex hull.
Every point of set is given in accordance the point (d + 1)
of dimensional paraboloid. Every (x1, x2, . . . , xd) is given in
accordance the point (x1, x2, . . . , xd, x

2
1 + x2

2 + . . . + x2
n).

A convex hull is built on the gotten points. Projecting then
every face of a convex hull back into d -dimensional space
(by rejecting the last coordinate) we will get triangulation
simplexes of initial set of points [1].

But the situation with the algorithms of construction the
multidimensional convex hulls is not much better than the situ-
ation with the Delaunay triangulation. Therefore this approach
does not give an optimal algorithm in theory. But it is widely
used in practice (the most rapid algorithm of construction the
convex hull is considered Quick Hull [12]).

Divide-and-Conquer Method. Divide-and-conquer is a
general and universal approach to the solution of wide class

V. Tereshchenko and D. Taran are with the Faculty of Cybernetics,
National Taras Shevchenko University of Kyiv, Kyiv, Ukraine, 02095 e-mail:
vtereshch@gmail.com, eqis.mail@gmail.com

Manuscript received February 15, 2012; revised February 29, 2012.

tasks. As for the task of the Delaunay triangulation this
approach did not find a direct application in general. It is
connected with the complication to divide a task into inde-
pendent subtasks. Although for the case of the plane this
approach gives an optimal theoretical algorithm [13]. Thus
a basic problem consists in that, how to divide a task into two
subtasks. There are two methods for its doing:

1. To divide a set into two subsets with a median on first
coordinate. Thus the equal amount of points in both subsets is
got, but much fixing is to be done on the point of confluence,
as these subtasks are dependent.

2. To build a dividing chain of triangles and get two
independent subtasks.

The first method is advantageous only for the case of a
plane. In multidimensional spaces, fixing of structure can
touch almost all built simplexes. The second approach gives
quite good results in general case, one of its realizations is
descedgeed under the name of DeWall [2]. It should be noted
that doing a task by the method Divide and Conqueror is
hardly to succeed to get Output - Sensitive algorithm.

Sweep Method. The idea of sweep line method consists
in a moving imaginary line on a plane, stopped on certain
points. Thus, passing the way on the points of events, a
sweep line solves the set problem. In multidimensional spaces
this algorithm has the type of a motion of a certain surface
(more often of a hyperplane). This approach gives the best
results of the Delaunay triangulation construction on a plane
and is widely used in practice (Fortune’s Algorithm[11]).
However for obvious reasons this algorithm can‘t be adapted
for a spatial case. To support the front hyperplane with the
sweep line it is necessary to deal with (d − 1) -dimensional
structures. That is why all operations for such structures
acquire high calculable complexity and have a high complexity
of implication.

Random Incremental Method. The basis of this approach
consists in adding the set points one by one and fixing
of triangulation [4,5]. The operation of fixing consists in
consideration of ”suspicious” pairs of nearby simplexes and
so-called ”flipping” operation for improper pairs.

The problem of this method is that in multidimensional
spaces the flip operation is very complex and consists of
many different cases. Another problem is that it is difficult to
assess the algorithm complexity, because in different cases the
amount of flips may be starting with several ones and ending
with a complete change of previously constructed simplexes.
Also the number of simplexes formed at a certain step can far
exceed the number of resulting simplexes, that will increase
radically the working time of the algorithm. This algorithm
”ungovernability” can somehow be compensated choosing the

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

536International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

order of points bypassing. The order would be ideal when
only the resulting simplexes of triangulation are added each
time. It would turn this algorithm into the direct one. But this
procedure is complicated and it is unclear how it can be found.

Direct algorithms. Direct algorithms build the final result
step by step . In this case, the direct algorithm discovers
another simplex of resulting triangulation at each step. In
general, the algorithm consists of the following steps:

1. To find the original edge and add it to the line.
2. To get the next edge out of the turn.
3. To find a simplex of triangulation based on this edge.
4. If there is a simplex, add all other edges of the simplex

to the turn.
5. To go to Step 2.
Unobvious here there are only steps 1 and 3. But step 1 is

done once for the entire algorithm, that‘s why its optimization
does not cause much concern. As for step 3, there is an obvious
approach to its interpretation. It consists in reviewing the entire
set of points and selecting the necessary one (this point forms
the simplex of a minimum radius). This approach to doing this
task gives us the slowest algorithm. There is a time estimate
O(mn) where m is number of resulting simplexes. So even
on a plane this algorithm is quadratic. But unlike all other
approaches the direct algorithm is exactly Output-Sensitive.
There are several optimizations of finding the next simplex.
The main is the grid method (the hash space points) and
the method of bubble inflating. But these optimizations are
unstable and in some cases may work for an indefinite time.

II. THE RESEARCH AIM

As it is seen from the previous review of the existing
algorithms for doing the sums, all the algorithms have some
drawbacks and in certain situations their work time can be very
high. Let‘s formulate what exactly we would like to receive
from the new algorithm:

1) the optimal work time;
2) stability of work on any sets of points;
3) and the universality of multidimensional spaces.
As for these demands, a direct algorithm has high expecta-

tions, because it meets quite simply the 2) and 3) requirements.
Although the first requirement is the most important, but
the direct algorithm leaves much space for optimization. The
proposed algorithm in this paper is the achievement of the
optimum working speed of direct algorithms. An appropriate
implementation of the algorithm and the analysis of its work-
ing time were done.

III. ALGORITHM

A. The general idea

As it was mentioned earlier, the offered algorithm is a direct
one. This means that its general steps correspond to the steps
of the direct algorithm. But each step is optimized to get the
optimal working speed. The step of searching the next simplex
underwent the major changes , as this step is the weakest point
of the direct algorithm. There is an open edge at this point for

Fig. 1. A successful point and the bettered location of points.

which the top is to be found, forming together with the edge
the resulting simplex of triangulation. The idea is to reject the
review of failed points. Let‘s have at some stage a nominee
for a successful point and consider the location of points that
fit better, figure 1.

The more optimal points are to be found inside the circle
(sphere) circumscedgeing the considered simplex. Then having
found a point inside we’ll narrow the area of further search.
Continuing in this way we will find the point which has no
other points inside the descedgeed circle. By the Delaunay
triangulation definition this is the point that forms a triangle
of triangulation. It is easy to notice that this method of search
is not limited by the case of a plane. It is also suitable for
multidimensional spaces.

B. Searching for the initial edge

The first step is to find the initial edge, where the first
simplex will be built. The edge is called a face of simplex.
In d-dimensional space simplex seems to be d + 1 point. The
edges of this simplex are all subsets of points that are of d
size. Obviously, all faces of the convex hull of the set of points
belong to certain simplexes of triangulation of these points.
Therefore, the initial edge can be any face of a convex hull.
So to find the initial face we can use the same algorithm search
Gift Wrapping (Gift Wrapping [13, 14]. The idea is to find
consistent hyperplanes, each of which has one point of the
convex hull more than the previous one. First find the point
of the least first coordinate. This point clearly belongs to the
convex hull. Fix the hyperplane perpendicular to the first axis
coordinate. The normal of the plane n = (1, 0, . . . , 0). This
will be the initial hyperplane F (figure 3).

Then one after another the next points are searched by the
resulting face. Such a point is chosen which forms the largest
angle built by the hyperplane on this step. Let‘s consider how
to find the angle between the point and the hyperplane, figure
2:

Vector a is a perpendicular to the edge (p1p2), which lies
in the hyperplane. Vector n is a normal to the hyperplane.
vk - is a vector from the new vertex to one of the edge’s
vertexes. The cotangent of an angle can be computed using
the following formula:

ctg(ϕ) = pravk/prnvk

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

537International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

Fig. 2. Finding the angle between the point and the hyperplane.

The projection of vector a on vector b is computed as
follows:

prba = (a,b)/|b|

With cotangents of angles, the largest angle can be found
, minimizing the value of the cotangent. Now let‘s consider
in detail how to build vectors a and n. At some stage we
have hyperplane Fj − 1 built on the j − 1 points. There is
also its normal n. Vector a must be a perpendicular to vector
n, vectors v1vi (j − 2 vectors) and the axes of coordinates
xj+1, xj+2, . . . , xd. These d − 1 correlations set the system
of linear equations, which having been done we obtain vector
a. With vectors n and a the cotangents of all angles can be
found, then find the next point vj . Now, with the hyperplane
Fj , it is necessary to recalculate normal n. The normal is to be
perpendicular to vectors v1vi (j − 1 vector) and the axes of
coordinates xj+1, xj+2, , xd. Having done the corresponding
system of lineare quations we get normal n to the new
hyperplane pj . Thus for d − 1 approaching we get the face
of the convex hull.

The Gauss method is used for solving systems of linear
equations. It is comfortable to implement and this is its main
advantage. Not really the optimal time of its work in our case
is not critical. So let‘s have a system of linear equations:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . .
an1x1 + an2x2 + + annxn = bn

The first part of the algorithm results matrix A = (aij) into
a triangular form. For this the line with a nonzero coefficient
is selected first for this. The place of this line is to be changed
with the first one, and then divide all the coefficients on a11.
Thus we obtain a unit as the first coefficient of the first line.
Reset then all the coefficients of the first column with the help
of the first line. For this subtract the first row multiplied at ai1
from each line with number i (i ≥ 2). Then similarly with the
second line ”destroy” all the other lines. As a result we get
the following system:

x1 + 0 + . . . + 0 = b′1
0 + x2 + . . . + 0 = b′2

. . .
0 + 0 + . . . + xn = b′n

Solving this system is found in an understandable way:

x∗ = (b′1, b
′
2, . . . , b

′
n)

It should be noted that this algorithm is general and we
considered the square case for convenience. If there are less
equations than variable ones (let them m < n), we will get half
triangled matrix as result transformations. In this case all the
variables xm+1, . . . , xn are independent. Assign them all the
value 1, and then calculate all other variables considering this.
Also, sometimes during the transformation a zero column can
be obtained. This also means that the variable that corresponds
to this column is independent. We can also choose 1 for its
meaning.

C. Hashing edges

At each step of finding a new simplex, it is necessary to
perform certain operations on the edges: add edges to the list
of ”open”, to check the presence of edges in this list. As these
operations are repeated many times, it is necessary to ensure
their optimality. All marks on the open edges must be stored
in hashes. Thus we get the speed of doing all the operations
for time O(1) we need. A edge is a list of d points that are
stored by their numbers. Let us solve the task for N points.
Then you can choose the hash function of the following form:

hash(e) = (N0e.v1 + N1e.v2 + N2e.v3 +
. . . Nd−1e.vd)modP

Here P is some large prime number, which is caused by
memory size, which we are ready to make a hash. With
hashing function, edges can be recorded in the corresponding
cells array size P . Searching for a particular edge one should
simply check the corresponding cell on the presence of this
edge. It should be noted that for avoiding differences it is
necessary to sort the list of the edge’s vertexes. Otherwise, for
different permutations of the same vertexes different hashes
will be received.

D. Search for the next simplex

The subtasks is to find the vertex for an open edge, which
together with that edge forms simplex of resulting triangula-
tion. Modification is that, instead of searching all vertexes ,
find the desired vertex using modified KD-tree.

The search starts from an infinite search region [−∞; +∞]d.
So first let‘s find any point that can form a simplex with this
edge. Now we can narrow the search region, since all the
”better” points for the given one are inside the hypersphere
fixed around the current simplex (formed by the edge and
point-challenger). The hypersphere (which is the region of
the next search) is approximated to the hypercube.The larger
dimensionality of space d is, the rougher this approximation is.
Therefore, with increasing of dimension space the efficiency
of the algorithm is lost. The search ends when no single point

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

538International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

is found within the gotten region. This means that the chosen
point is the vertex of simplex triangulation. The situation is
possible when no point was found in the search process. This
means that the edge is the face of the convex hull. In this
case, this edge closes without adding the simplex. If the point
was found, then the corresponding simplex is constructed and
recorded into the resulting list of triangulation simplexes. In
addition, d new edges simplex are attached to all open edges.
When adding a new edge it is possible that this edge is in the
queue already. In this case, it must be removed from the queue
and marked as ”complete”. Hash is used for quick checking of
the edge‘s availability as descedgeed in the previous section.

KD-tree [13, 15] is a structure used for fast search the points
belonging to the query range. Query ranges are rectangles
(parallelepipeds) with the sides parallel to axes of coordinates.
It uses O(n) memory. It is built for the time O(nlogn). Each
query is done on average for O(logn), in the worst case, for
O(n1−1/d). In our case the search region should be narrowed
in finding the point. The new region is considered as approxi-
mation of circumscedgeed sphere around the simplex-applicant
to hypercube. Supposing, for finding the next point, we have
a hypersphere centered at the point c = (c1, c2, . . . , cd) and
radius R. The query range will be parallelepiped, parallel to
the axes of coordinates. For each coordinate k = 1, 2, ..., d
limited by numbers ck − R, ck + R. Using KD-tree without
changes does not provide with a pure logarithmic search time.
In many cases, the time is linear, which makes the algorithm
a simple direct algorithm (which is the slowest of all). But the
next two optimizations will return the algorithm the desired
speed.

The first optimization. Sometimes the search procedure
does not result scienter. An example is the convex hull faces,
for which there is no simplex, that closes the open edge. In
this case, the search should review all the points and this will
increase the working time of the algorithm significantly. But
in some cases we can cut off the large search region without
a detailed verification. It should be noted that there is 1 or 2
simplexes for every edge of triangulation. Open edges are the
edges one of the simplexes of which has already been found,
and the other one is to be found. Therefore every open edge
actually has a direction - the points search is only in one half-
space. That‘s why the search on regions that lie completely in
the other semispace can be immediately discarded. Checking
whether a parallelepiped belongs completely to a certain half-
space is simple. To do this, check each of the vertexes
belonging to this half-space. If they all belong to it - then
the whole parallelepiped belongs to this half-space.

The second optimization. In the original KD-tree it does
not matter from which subset to start the search if it should be
continued on both. This is due to the fact that the query range
is fixed, that‘s why the search must check both subsets. In our
case, checking one of the subsets, the region may be narrowed
and there will be no need in checking the other one. So you
need to start the search with a more reliable subset. If the edge
is wholly belongs to one of the subsets, it is advantageous to
start the search from it. This is due to the fact that the best
points in general are closer to the edge than others.

The update of the query range. When finding a new

vertex-pretender the query range must be updated. The hy-
persphere circumscedgeing the simplex must be found. The
simplex is given with d + 1 point. Let‘s write the system
of equations for finding the center of the circumscedgeed
hypersphere. This is the point, the distance from which to
all points of simplex is the same:

(c1 − p11)2 + (c2 − p12)2 + . . . + (cd − p1d)2 =
=(c1 − pi1)2 + (c2 − pi2)2 + . . . + (cd − pid)2,
(2 ≤ i ≤ d + 1)

Reordering the variables we obtain the following equality:

c1(2p11 − 2pi1) + . . . + cd(2p1d − 2pid) =
=(p2

11 − p2
i1) + . . . + (p2

1d − p2
id)

Thus, we have a system with d (2 ≤ i ≤ d + 1) linear
equations for variables c = (c1, c2, . . . , cd). Solving it by
the Gauss method, we obtain the solution - the center of
circumscedgeed hypersphere. With the center the distance to
one of the points of simplex can be calculated , the radius is
obtained.

E. The final processing

Each time, getting a new simplex, it is necessary to write it
into the resulting list simplex. It is also necessary to maintain
the structure of the neighborhood. For this each of the open
edges is put an according simplex, for which this edge is
recorded in the line and hash. After finding the simplex, a
closing edge, a mark on the neighbouring resulting simplex
and the simplex responding to this edge is made . Also, adding
a edge there may be a situation when it is already in the queue.
It is necessary to make a mark on the neighbouring simplexes,
that generated these edges, and the very edges should be
removed from the line. Parallelly the Voronoi diagram of these
points may be built. The vertexes of the diagram are the centers
of the hyperspheres circumscedgeed around simplexes. They
were computed in the search simplex process. The edges are
the segments between the centers of neighbouring simplexes,
figure 3.

IV. ESTIMATION OF THE ALGORITHM COMPLEXITY

First of all, it should be considered the amount of mem-
ory used by the algorithm. Let‘s consider all the structures
necessary for the work:

1. The set of all points is stored in the KD-Tree - O(n).
2. Hash operations with the edges - O(P).
3.The list the resulting simplex - O(m).
So the memory evaluation required for the algorithm is

O(n + m + P).
Let‘s consider a sequence of basic operations needed to

perform each step of the algorithm:
1. Searching for the initial edge (d repetitions).
1.1. The Gauss method for finding vector a - O(d3).
1.2. Finding the point with a maximum angle - O(dn).
1.3. The Gauss method for finding a normal- O(d3).
2. Finding the next simplex (m repetitions):

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

539International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

Fig. 3. Constructing the Delaunay Triangulation.

TABLE I
COMPARING WORK TIME OF ALGORITHMS

number
of points

D-
Range

Fortune Calls K

100000 2788 1413 27,52 1,973107
200000 5782 3110 29,04 1,859164
300000 8803 4708 29,4 1,869796
400000 12248 6777 30,91 1,807289
500000 14988 8472 30,35 1,769122
600000 18539 10831 32,46 1,711661
700000 21882 12545 32,4 1,744281
800000 24739 15466 31,91 1,599573
900000 28388 17602 32,69 1,612771
1000000 32512 20428 33,92 1,591541

2.1. Get the next edge out of the line - O(1).
2.2. Finding the desired point - O(n1−1/d) (on average

O(logn)).
2.3. Adding the simplex into resulting list - O(1).
2.4. The hash of new edges - O(1).
Hence there is an estimate of the algorithm complexity in

the worst case O(2d4 +d2n+mn1−1/d). But the complicated
case is practically unattainable, and such assessment is due
only to the complexity to estimate it less roughly. In practice,
the expected complexity of the algorithm is more important. It
leads to the following estimation of the algorithm complexity
O(2d4+d2n+mlogn). Assuming a constant space dimension,
we obtain a more concise evaluation of the expected complex-
ity O(mlogn).

Comparing work time is given in Table 1. For reference
let‘s take the fastest algorithm in the plane. For this the
implementation of the Fortune algorithm [11]. Both algorithms
are to be tested on one computer (usually a laptop with usual
characteristics) under the same conditions.

In the first column the number of points for which the tests
were conducted is specified. In the second and the third ones
the specific time of both algorithms (in milliseconds) is given.
The fourth column shows the average number of calls search-
ing for the optimal point of building a new simplex. Coefficient

Fig. 4. The time work of D-Range algorithm in three dimensions space.

K indicates how many times the proposed algorithm is slower
than the Fortune algorithm.

Despite expectations, both algorithms are close to linear
time work. Paying attention to coefficient K it is evident that
it monotonously decreases with increasing number of points.
Some of the D-Range algorithm slowness is connected with
the cost of time on the preprocessing (KD-tree and the search
of the initial edge). But, unlike offered algorithm (D-Range
algorithm) the Fortune algorithm is to work on the plane
and is not adapted in a multidimensional space. Figure 4
shows schedule the time work of D-Range algorithm in three
dimensions space:

V. CONCLUSIONS

The result of this work is a new efficient algorithm that is
applicable to the cases of multidimensional problem solving
of Delaunay triangulation or the Voronoi diagram construc-
tion. Its practical implementation is confirmed. Also, paying
attention to set requirements, you can specify the stability of
the algorithm work and a low dependence on any specific
sampling points. The algorithm behaves identically on any
sets. Although the algorithm is not theoretically optimal, it
is optimal in terms of the expected speed.

REFERENCES

[1] J.E. Goodman and J. O’Rourke, eds. Handbook of Discrete and Com-
putational Geometry. Second Edition, Chapman and Hall/CRC Press,
2004.

[2] P. Cignoni, C. Montani, R. Scopigno. DeWall: A Fast Divide and Conquer
Delaunay Triangulation Algorithm in Ed. Computer-Aided Design Vol.
30 (5):333-341, 1998.

[3] M. de Berg, O. Cheong, M.van Kreveld, M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 2008.

[4] L. Guibas, D. Knuth, M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. Algorithmica 7:381-413,1992.

[5] H. Edelsbrunner, S. Nimish. Incremental Topological Flipping Works for
Regular Triangulations. Algorithmica 15 (3): 223-241,1996.

[6] M. Caroli, M. Teillaud. Delaunay triangulations of point sets in closed
euclidean d-manifolds. In Proc. of the 27th annual ACM symposium on
Computational geometry, pages 274-282, 2011.

[7] M. Hoffmann., Y. Okamoto. The minimum weight triangulation problem
with few inner points. Computational Geometry. 34 (3):149-158, 2006.

[8] J. Gudmundsson, H. Haverkort, and M. van Kreveld. Constrained higher
order Delaunay triangulations. Comput.Geom. Theory Appl., 30:271-
277, 2005.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

540International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

[9] R.I. Silveira, M. van Kreveld. Towards a Definition of Higher Order
Constrained Delaunay Triangulations. In proc. 19th Canadian Conference
on Computational Geometry, pages 322-337, 2007.

[10] T. de Kok, M. van Kreveld and M. Löffler. Generating realistic terrains
with higher-order Delaunay triangulations. Comput. Geom. Theory
Appl., 36:52-65,2007.

[11] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2:153-174,1987.

[12] C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The Quickhull algorithm
for convex hulls. ACM Trans. on Mathematical Software, 22(4):469-483,
1996.

[13] F. Preparata and M.I. Shamos. Computational Geometry: An introduc-
tion. Springer-Verlag, Berlin, 1985.

[14] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. JASM
17(1): 78-86, 1970.

[15] J. L. Bentley. Muldimensional binary search trees used for associative
searching. Communications of the ACM 18: 509-517, 1975.

Vasyl Tereshchenko In 1986 graduated from the
Mathematics and Mechanics Faculty of Kyiv Na-
tional Taras Shevchenko University. In 1992 grad-
uated from graduate school and in 1993 defended
PhD dissertation on the degree C.Sci. (Phys-Math.).
In 2011 I defended a dissertation for the degree a
doctor of Phys.-Math. sciences (theoretical bases of
computer science and cybernetics).

Since 1994 - Associate Professor Faculty of Cy-
bernetics KNTSU. Lecturer in computer graphics
and in computational geometry, and also in databases

and in the theory of algorithms.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:5, 2012

541International Scholarly and Scientific Research & Innovation 6(5) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:6
, N

o:
5,

 2
01

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

00
.p

df

