Search results for: nonlinear equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2126

Search results for: nonlinear equations

1916 Pushover Analysis of Short Structures

Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani

Abstract:

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
1915 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1914 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)

Authors: Li Ge

Abstract:

In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:

Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
1913 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

Authors: Toshinori Nawata, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
1912 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1911 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1910 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová

Abstract:

The article presents two mathematical models of the interaction between a rotating shaft and an incompressible fluid. The mathematical model includes both the journal bearings and the axially traversed hydrodynamic sealing gaps of hydraulic machines. A method is shown for the identification of additional effects of the fluid acting on the rotor of the machine, both for a linear and a nonlinear model. The interaction is expressed by matrices of mass, stiffness and damping.

Keywords: CFD modeling, hydrodynamic gap, matrices of mass, stiffness and damping, nonlinear mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
1909 A Family of Improved Secant-Like Method with Super-Linear Convergence

Authors: Liang Chen

Abstract:

A family of improved secant-like method is proposed in this paper. Further, the analysis of the convergence shows that this method has super-linear convergence. Efficiency are demonstrated by numerical experiments when the choice of α is correct.

Keywords: Nonlinear equations, Secant method, Convergence order, Secant-like method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
1908 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
1907 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y''' = f(x, y, y', y''), y(α)=y0, y'(α)=β, y''(α)=η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non – stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep, Self starting, Third Order Ordinary Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1906 Symmetries, Conservation Laws and Reduction of Wave and Gordon-type Equations on Riemannian Manifolds

Authors: Sameerah Jamal, Abdul Hamid Kara, Ashfaque H. Bokhari

Abstract:

Equations on curved manifolds display interesting properties in a number of ways. In particular, the symmetries and, therefore, the conservation laws reduce depending on how curved the manifold is. Of particular interest are the wave and Gordon-type equations; we study the symmetry properties and conservation laws of these equations on the Milne and Bianchi type III metrics. Properties of reduction procedures via symmetries, variational structures and conservation laws are more involved than on the well known flat (Minkowski) manifold.

Keywords: Bianchi metric, conservation laws, Milne metric, symmetries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1905 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading

Authors: M. Amiri

Abstract:

In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.

Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
1904 Some Static Isotropic Perfect Fluid Spheres in General Relativity

Authors: Sachin Kumar, Y. K. Gupta, J. R. Sharma

Abstract:

In the present article, a new class of solutions of Einstein field equations is investigated for a spherically symmetric space-time when the source of gravitation is a perfect fluid. All the solutions have been derived by making some suitable arrangements in the field equations. The solutions so obtained have been seen to describe Schwarzschild interior solutions. Most of the solutions are subjected to the reality conditions. As far as the authors are aware the solutions are new.

Keywords: Einstein's equations, General Relativity, PerfectFluid, Spherical symmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
1903 Numerical Simulation of a Conventional Heat Pipe

Authors: Shoeib Mahjoub, Ali Mahtabroshan

Abstract:

The steady incompressible flow has been solved in cylindrical coordinates in both vapour region and wick structure. The governing equations in vapour region are continuity, Navier-Stokes and energy equations. These equations have been solved using SIMPLE algorithm. For study of parameters variation on heat pipe operation, a benchmark has been chosen and the effect of changing one parameter has been analyzed when the others have been fixed.

Keywords: Vapour region, conventional heat pipe, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4199
1902 New Delay-dependent Stability Conditions for Neutral Systems with Nonlinear Perturbations

Authors: Lianglin Xiong, Xiuyong Ding, Shouming Zhong

Abstract:

In this paper, the problem of asymptotical stability of neutral systems with nonlinear perturbations is investigated. Based on a class of novel augment Lyapunov functionals which contain freeweighting matrices, some new delay-dependent asymptotical stability criteria are formulated in terms of linear matrix inequalities (LMIs) by using new inequality analysis technique. Numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.

Keywords: Asymptotical stability, neutral system, nonlinear perturbation, delay-dependent, linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1901 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño

Abstract:

In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.

Keywords: Bifurcation, heteroclinic orbits, steady state, traveling wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1900 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1899 On the Fuzzy Difference Equation xn+1 = A +

Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,

Abstract:

In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.

Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1898 Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

Authors: Harpreet Kaur, Vinod Mishra, R. C. Mittal

Abstract:

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Keywords: Boundary layer Blasius equation, collocation points, quasi-linearization process, uniform haar wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
1897 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1896 Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet

Authors: M. A. Koroma, S. Widatalla, A. F. Kamara, C. Zhang

Abstract:

Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.

Keywords: Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1895 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
1894 The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes

Authors: A. N. K. Nasir, M. A. Ahmad, R. M. T. Raja Ismail

Abstract:

The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is derived. The final model is then represented in statespace form and the system suffers from mismatched condition. Two system responses namely the robot position and robot angular position are obtained. The performances of the LQR and PID-PID controllers are examined in terms of input tracking and disturbances rejection capability. Simulation results of the responses of the nonlinear 2–wheels balancing robot are presented in time domain. A comparative assessment of both control schemes to the system performance is presented and discussed.

Keywords: PID, LQR, Two-wheels balancing robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5292
1893 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: Force variations, linear direct drive, modeling and system identification, variable excitation flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
1892 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a  priori information of the uncertainties is not available. For such  systems, we assume that the upper bound of the uncertainties is  represented as a Fredholm integral equation of the first kind and we  propose an adaptation law that is capable of estimating the upper  bound and design a continuous robust control which renders nonlinear  uncertain systems ultimately bounded.

 

Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1891 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials

Authors: N. N. Omehe

Abstract:

CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω)  from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.

Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269
1890 A Review in Advanced Digital Signal Processing Systems

Authors: Roza Dastres, Mohsen Soori

Abstract:

Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.

Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
1889 A High Order Theory for Functionally Graded Shell

Authors: V. V. Zozulya

Abstract:

New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook-s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords: Shell, FEM, FGM, legendre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1888 An Accurate Computation of Block Hybrid Method for Solving Stiff Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

In this paper, self-starting block hybrid method of order (5,5,5,5)T is proposed for the solution of the special second order ordinary differential equations with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on stiff ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
1887 Positive Solutions for Three-Point Boundary Value Problems of Third-Order Nonlinear Singular Differential Equations in Banach Space

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for singular differential equation in Banach space, which improved and generalize the result of related paper.

Keywords: Banach space, cone, fixed point index, singular differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480