**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30121

##### A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

**Authors:**
Miriam Sosa-Díaz,
Faustino Sánchez-Garduño

**Abstract:**

**Keywords:**
Bifurcation,
heteroclinic orbits,
steady state,
traveling
wave.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1125103

**References:**

[1] Antony M. Dean. (1982) A simple Model of Mutualism, The American Naturalist, 121, 409-416.

[2] Jang, S. R. (2002). Dynamic of Herbivore-Plant-Pollinator models. J. Math. Biol., 44, 129-149.

[3] Kot, M. (2001).Elements of Mathematical Ecology, Cambridge: Cambridge University Press.

[4] Wolf, L. and Hainsworth, F. R. and Stiles, F. G. (1972). Energetics of Foraging: Rate and efficiency of Nectar Extraction by Hummingbirds. Science, 176, 1351-1352.

[5] Michael A. Fischman and L. Hadany. (2010). Plant-Pollinator Population Dynamics. Theor. Popul. Biol., 78, 270-277.

[6] Mingxin Wang. (2004). Stationary Patterns for a Prey-Predator Model with Prey-Dependent and Ratio-Dependent Functional Responses and Diffusion. Phys. D., 196, 172-192.

[7] Perko, L. (1990). Differential Equations and Dynamical Systems, Springer.

[8] S´anchez-Gardu˜no,F., Castellanos, V. and Quilant´an, I. (2013). Dynamic of a nonlinear mathematical model for three interacting populations. Biol. Soc. Mat. Mex., 20, 147-170.

[9] S´anchez-Gardu˜no, F. and Bre˜na-Medina, V. (2011). Searching for spatial patterns in a pollinator-plant-herbivore mathematical model. Bull. Math. Biol., 73, 1118-1153.

[10] Sober´on, J. M., and Mart´ınez Del R´ıo, C. (1981). The Dynamic a Plant-Pollinator Interaction. J. Theor. Biol., 91, 363-378.

[11] Vandermeer, J. and Boucher, D. (1978). Varieties of mutualistic Interaction in Population Models, J. Theor. Biol, 74, 549-558.

[12] Wells, H. (1983). Population Equilibria and Stability in Plant-Animal Pollination Systems. J. Theor. Biol., 100, 685-699.

[13] Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer.

[14] Wissel. C. (1977). On the Advantage of the Specialization of Flowers on Particular Pollinator Species. J. Theor. Biol, 69, 11-22.

[15] Yuanshi Wang., D. L. DeAngelis and J. N. Holland. (2012). Uni-directional Interaction and Plant-Pollinator-Robber Coexistence. Bull Math. Biol, 74 2142-2164.

[16] Yuanshi Wang, Hong W. and Shan S. (2012). Persistence of Pollination Mutualisms in Plant-Pollinator-Robber Systems. Theor. Popul. Biol., 81 243-250.