Search results for: logistic objectives.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 747

Search results for: logistic objectives.

537 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder

Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka

Abstract:

The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.

Keywords: Cytokine, saliva, attention deficit hyperactivity disorder, child, biomarker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
536 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
535 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
534 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
533 Self-Organizing Maps in Evolutionary Approachmeant for Dimensioning Routes to the Demand

Authors: J.-C. Créput, A. Koukam, A. Hajjam

Abstract:

We present a non standard Euclidean vehicle routing problem adding a level of clustering, and we revisit the use of self-organizing maps as a tool which naturally handles such problems. We present how they can be used as a main operator into an evolutionary algorithm to address two conflicting objectives of route length and distance from customers to bus stops minimization and to deal with capacity constraints. We apply the approach to a real-life case of combined clustering and vehicle routing for the transportation of the 780 employees of an enterprise. Basing upon a geographic information system we discuss the influence of road infrastructures on the solutions generated.

Keywords: Evolutionary algorithm, self-organizing map, clustering and vehicle routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
532 Performance Modeling for Web based J2EE and .NET Applications

Authors: Shankar Kambhampaty, Venkata Srinivas Modali

Abstract:

When architecting an application, key nonfunctional requirements such as performance, scalability, availability and security, which influence the architecture of the system, are some times not adequately addressed. Performance of the application may not be looked at until there is a concern. There are several problems with this reactive approach. If the system does not meet its performance objectives, the application is unlikely to be accepted by the stakeholders. This paper suggests an approach for performance modeling for web based J2EE and .Net applications to address performance issues early in the development life cycle. It also includes a Performance Modeling Case Study, with Proof-of-Concept (PoC) and implementation details for .NET and J2EE platforms.

Keywords: Performance Measures, Performance Modeling, Performance Testing, Resource Utilization, Response Time, Throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
531 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4225
530 A Study of the Lighting Control System for a Daylit Office

Authors: Chih-Jian Hu, Chung-Chih Cheng, Hsiao-Yuan Wu., Nien-Tzu Chao

Abstract:

Increasing user comfort and reducing operation costs have always been primary objectives of lighting control strategies in a building. This paper proposes an architecture of the lighting control system for a daylit office. The system consists of the lighting controller, A/D & D/A converter, dimmable LED lights, and the lighting management software. Verification tests are conducted using the proposed system specialized for the interior lighting of a open-plan office. The results showed the proposed architecture of the lighting system would improve the overall system reliability, lower the system cost, and provide ease of installation and maintenance.

Keywords: control, dimming, LED, lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
529 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making

Authors: Jadwiga R. Ziolkowska

Abstract:

In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.

Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
528 ICCFMS – Set Up Candid Clips Effectiveness

Authors: P. Suparada, D. Eakapotch

Abstract:

The objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire and in-depth interview from experts. The findings showed the advantages and disadvantages of communication for publicizing and advertising via new media in the form of set up candid clip including with the specific target group for this kind of advertising. It will be useful for fields of publicizing and advertising in the new media forms at the present.

Keywords: Candid Clip, Communication, New Media, Social Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
527 Recent Trends in Supply Chain Delivery Models

Authors: Alfred L. Guiffrida

Abstract:

A review of the literature on supply chain delivery models which use delivery windows to measure delivery performance is presented. The review herein serves to meet the following objectives: (i) provide a synthesis of previously published literature on supply chain delivery performance models, (ii) provide in one paper a consolidation of research that can serve as a single source to keep researchers up to date with the research developments in supply chain delivery models, and (iii) identify gaps in the modeling of supply chain delivery performance which could stimulate new research agendas.

Keywords: Delivery performance, Delivery window, Supply chain delivery models, Supply chain performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
526 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208
525 Seismic Vulnerability Assessment of Buildings in Algiers Area

Authors: F. Lazzali, M. Farsi

Abstract:

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Keywords: Damage, EMS-98, inventory building, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
524 Threshold Submergence of Flow over PK Weirs

Authors: A. Javaheri, A. R. Kabiri-Samani

Abstract:

In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.

Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
523 Barriers to Knowledge Management: A Theoretical Framework and a Review of Industrial Cases

Authors: Chihab BenMoussa

Abstract:

Firms have invested heavily in knowledge management (KM) with the aim to build a knowledge capability and use it to achieve a competitive advantage. Research has shown, however, that not all knowledge management projects succeed. Some studies report that about 84% of knowledge management projects fail. This paper has integrated studies on the impediments to knowledge management into a theoretical framework. Based on this framework, five cases documenting failed KM initiatives were analysed. The analysis gave us a clear picture about why certain KM projects fail. The high failure rate of KM can be explained by the gaps that exist between users and management in terms of KM perceptions and objectives

Keywords: Knowledge management, barriers to knowledge management, Knowledge-gaps, supply-driven approach to knowledge management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
522 Promoting Non-Formal Learning Mobility in the Field of Youth

Authors: Juha Kettunen

Abstract:

The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.

Keywords: Non-formal learning, youth work, social inclusion, innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
521 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
520 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
519 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332
518 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
517 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: Microbiological analysis, shelf life, transport damage, volatile organic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
516 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
515 Analyzing and Determining the Ideal Response Force for Combatting Terrorist Groups

Authors: Erhan Turgut, Salih Ergün, Abdülkadir Öz

Abstract:

Terror is a modern war strategy which uses violence as a means of communication in order to achieve political objectives. In today’s security environment narrowing the propaganda field of terrorist organization is the primary goal for the security forces. In this sense, providing and maintaining public support is the most necessary ability for security units. Rather than enemy and threat-oriented approach, homeland security oriented approach is essential to ensure public support. In this study, terror assumed as a homeland security issue and assigning the law enforcement forces with military status is analyzed.

Keywords: Terrorism, Counter-terrorism, Military Status Law-enforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
514 Relationships between Social Entrepreneurship, CSR and Social Innovation: In Theory and Practice

Authors: Krisztina Szegedi, Gyula Fülöp, Ádám Bereczk

Abstract:

The shared goal of social entrepreneurship, corporate social responsibility and social innovation is the advancement of society. The business model of social enterprises is characterized by unique strategies based on the competencies of the entrepreneurs, and is not aimed primarily at the maximization of profits, but rather at carrying out goals for the benefit of society. Corporate social responsibility refers to the active behavior of a company, by which it can create new solutions to meet the needs of society, either on its own or in cooperation with other social stakeholders. The objectives of this article are to define concepts, describe and integrate relevant theoretical models, develop a model and introduce some examples of international practice that can inspire initiatives for social development.

Keywords: Corporate social responsibility, CSR, social innovation, social entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4151
513 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Authors: Arkady Bolotin

Abstract:

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
512 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
511 A Balanced Scorecard for Identifying Factors of Strategic Fit of National R&D Program on the Creative Economy Policy

Authors: Jieun Kim, Haejin Cho, Yongtae Park, Yoonjo Kim, Jeonghwan Jeon

Abstract:

As creative economy is important theme for national policy, many countries have been raising investments through national R&D programs. Since not all of programs are aligned with the ultimate vision and R&D investment is one of the most decisive elements, the strategic fit of national R&D programs should be evaluated for effective resource allocation. This study aims at identifying the factors of strategic fit of national R&D program on the creative economy policy. For this purpose, the balanced scorecard (BSC) model for R&D is utilized to translate national strategic objectives into a set of coherent performance factors.

Keywords: Balanced scorecard, Creative economy, National R&D program, Strategic fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
510 Advertising Appeals and Cultural Values in Social Media Commercials in UK, Brasil and India: Case Study of Nokia and Samsung

Authors: Han Nguyen

Abstract:

The objectives of this study is to investigate the impact of culture on advertising appeals in mobile phone industry via social media channel in UK, Brazil and India. Content analysis on Samsung and Nokia commercials in YouTube is conducted. The result indicates that the advertising appeals are both congruent and incongruent with cultural dimensions in UK, Brazil and India. The result suggests that Hofstede and value paradoxes might be the tools to predict the relationship between cultural values and advertising appeals.

Keywords: Advertising appeal, international advertising, mobile phone advertising, social media advertising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5276
509 An Investigation of Quality Practices in Libyan Industrial Companies

Authors: Mostafa A. Shokshok, Omran Ali Abu Krais

Abstract:

This paper describes the collection and analysis of data obtained from face-to-face interviews conducted in selected Libyan industrial companies. The objectives of the interviews are to enhance understanding, and generate explanations of current issues in culture and quality management systems in Libyan companies. The method used in analyzing the questions, as well as the main finding of each question are explained. The interviews probed areas identify national and organizational culture, quality management systems, current methods, effects, barriers and other factors affecting the success of quality management implementation. Eleven questions are prepared and been discussed with the interviewees.

Keywords: Interviews, quality, culture, Libyan industrial companies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
508 Customer Satisfaction on Reliability Dimension of Service Quality in Indian Higher Education

Authors: Rajasekhar Mamilla, Janardhana G., Anjan Babu G.

Abstract:

The present research study analyses the students’ satisfaction with university performance regarding the reliability dimension, ability of professors and staff to perform the promised services with quality to students in the post-graduate courses offered by Sri Venkateswara University in India. The research is done with the notion that the student compares the perceived performance with prior expectations. Customer satisfaction is seen as the outcome of this comparison. The sample respondents were administered with schedule based on stratified random technique for this study. Statistical techniques such as factor analysis, t-test and correlation analysis were used to accomplish the respective objectives of the study.

Keywords: Satisfaction, Reliability, Service Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4732