Search results for: career decision efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1795

Search results for: career decision efficacy

1585 The Emotions in Consumers’ Decision Making: Review of Empirical Studies

Authors: Mikel Alonso López

Abstract:

This paper explores, in depth, the idea that emotions are present in all consumer decision making processes, meaning that purchase decisions have never been purely cognitive or as they traditionally have been defined, rational. Human beings, in all kinds of decisions, has "always" used neural systems related to emotions along with neural systems related to cognition, regardless of the type of purchase or the product or service in question. Therefore, all purchase decisions are, at the same time, cognitive and emotional. This paper presents an analysis of the main contributions of researchers in this regard.

Keywords: Emotions, decision making, consumer behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1584 Airline Quality Rating Using PARIS and TOPSIS in Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents a multiple criteria evaluation analysis for airline quality rating using the preference analysis for reference ideal solution (PARIS) and the technique for order of preference by similarity to ideal solution (TOPSIS) approaches. The airline quality rating was developed as an objective method for assessing airline quality on combined multiple performance criteria and the importance weights of criteria. The selected multiple performance criteria were determined as on-time arrivals, mishandled baggage, involuntary denied boardings, and consumer complaints. The multiple criteria decision making analysis results show that the alternative ( a2) airline is the best-rated airline.

Keywords: airline quality rating, multiple criteria decision making, multiple criteria decision making analysis, entropy weight, MCDMA, PARIS, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
1583 Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management

Authors: E. Bruno, F. Lacarbonara, M. C. Placentino, D. Gramegna

Abstract:

Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.

Keywords: Multi-criteria decision analysis, Hazardous wastemanagement, Asbestos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
1582 Stochastic Resonance in Nonlinear Signal Detection

Authors: Youguo Wang, Lenan Wu

Abstract:

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Keywords: Probability of detection error, signal detection, stochastic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1581 The Impact of the Knowledge-Sharing Factors on Improving Decision-Making at Sultan Qaboos University Libraries

Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi

Abstract:

Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the Sultan Qaboos University (SQU) libraries (Main Library, Medical Library, College of Economic and Political Science Library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge sharing positively affects decision making process.

Keywords: Knowledge sharing, decision making, information technology, management support, corroboration, Sultan Qaboos University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156
1580 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1579 Assessing Community Participation in Decision-Making Process under Co-Management: A Case Study on Hail Haor, Bangladesh

Authors: R. Ferdous

Abstract:

Power, responsibility sharing, and democratic decision-making are the central ethos to co-management. It is assumed that involving local community in the decision-making process can create a sense of ownership and responsibility of that community and motivate the community towards collective action. But this paper demonstrated that the process to involve local community is not simple and straightforward as it is influenced by structural aspects, power relations among the actors, and social embedded institutions. These factors shape the process in that way who will participate, how they will participate and how the local community maneuvers their agency in the decision-making process. To grasp the complexities that materialize in the process of participation and to understand the inclusionary and exclusionary nature of participation, this paper examines the subjective understanding of different stakeholders concerning participation and furthermore observes the enabling or constraining factors that affect the community to exercise their agency.

Keywords: Participation, social embeddedness, power, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
1578 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
1577 A Method under Uncertain Information for the Selection of Students in Interdisciplinary Studies

Authors: José M. Merigó, Pilar López-Jurado, M.Carmen Gracia, Montserrat Casanovas

Abstract:

We present a method for the selection of students in interdisciplinary studies based on the hybrid averaging operator. We assume that the available information given in the problem is uncertain so it is necessary to use interval numbers. Therefore, we suggest a new type of hybrid aggregation called uncertain induced generalized hybrid averaging (UIGHA) operator. It is an aggregation operator that considers the weighted average (WA) and the ordered weighted averaging (OWA) operator in the same formulation. Therefore, we are able to consider the degree of optimism of the decision maker and grades of importance in the same approach. By using interval numbers, we are able to represent the information considering the best and worst possible results so the decision maker gets a more complete view of the decision problem. We develop an illustrative example of the proposed scheme in the selection of students in interdisciplinary studies. We see that with the use of the UIGHA operator we get a more complete representation of the selection problem. Then, the decision maker is able to consider a wide range of alternatives depending on his interests. We also show other potential applications that could be used by using the UIGHA operator in educational problems about selection of different types of resources such as students, professors, etc.

Keywords: Decision making, Selection of students, Uncertainty, Aggregation operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
1576 Examination of Self-Efficacy and Life Satisfaction Levels of Students Receiving Education in Schools of Physical Education and Sports

Authors: Hasan Şahan, Murat Tekin, Mustafa Yıldız, Meriç Eraslan, Mevlüt Yıldız, Hatice Sim, Demet Neriman Yarar

Abstract:

The purpose of this study is to examine the selfefficacy and life satisfaction levels of students receiving education in schools of physical education and sports. The population of the study consisted 263 students, among which 154 were male and 109 were female ( X age=19,4905 + 2,5605), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the selfefficacy scale, which was developed by Jarrusselam and Shwarzer (1981) [1] and adapted to Turkish by Yesillay (1993) [2], and the life satisfaction scale, developed by Diener, Emmos, Larsen and Griffin (1985) [3] and adapted to Turkish by Kokler (1991) [4], were utilized.For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P<0,05. SPSS (Statistical package for social sciences) package software was used for evaluating the data and finding out the calculated values.In conclusion of this study, it was determined that female students have higher life satisfaction levels than male students, while students attending to the second grade had higher life satisfaction levels than fourth grade students. On the other hand, general self-efficacy levels of male students were found out to be higher than that of female students. It was also determined that students attending to the fourth grade had higher general self-efficacy levels than those receiving education in the first grade. Availability of a significant relation was determined between life satisfaction levels and self-efficacy levels.

Keywords: Physical Education And Sports, Student, Life Satisfaction, Self-Efficacy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
1575 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1574 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation

Authors: Ferenc Peter Pach, Janos Abonyi

Abstract:

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
1573 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey

Authors: C. Ardil

Abstract:

In this research, a multidimensional  compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional  compromise optimization model. Finally, multidimensional  compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey. 

Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
1572 Feasibility Analysis Studies on New National R&D Programs in Korea

Authors: Seongmin Yim, Hyun-Kyu Kang

Abstract:

As a part of evaluation system for R&D program, the Korean government has applied feasibility analysis since 2008. Various professionals put forth a great effort in order to catch up the high degree of freedom of R&D programs, and make contributions to evolving the feasibility analysis. We analyze diverse R&D programs from various viewpoints, such as technology, policy, and Economics, integrate the separate analysis, and finally arrive at a definite result; whether a program is feasible or unfeasible. This paper describes the concept and method of the feasibility analysis as a decision making tool. The analysis unit and content of each criterion, which are key elements in a comprehensive decision making structure, are examined

Keywords: Decision Making of New Government R&D Program, Feasibility Analysis Study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1571 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN

Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma

Abstract:

Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.

Keywords: Rotation, Face, Recognition, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
1570 An Application of Generalized Fuzzy Soft Sets in a Social Decision Making Problem

Authors: Nisha Singhal, Usha Chouhan

Abstract:

At present, application of the extension of soft set theory in decision making problems in day to day life is progressing rapidly. The concepts of fuzzy soft set and its properties have been evolved as an area of interest for the researchers. The generalization of the concepts recently got importance and a rapid growth in the research in this area witnessed its vital-ness. In this paper, an application of the concept of generalized fuzzy soft set to make decision in a social problem is presented. Further, this paper also highlights some of the key issues of the related areas.

Keywords: Soft set, Fuzzy Soft set, Generalized Fuzzy Soft set, Membership and Non-Membership Score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
1569 Learning User Keystroke Patterns for Authentication

Authors: Ying Zhao

Abstract:

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
1568 Payment for Pain: Differences between Hypothetical and Real Preferences

Authors: J. Trarbach, S. Schosser, B. Vogt

Abstract:

Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.

Keywords: Decision making, primacy effect, real incentives, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
1567 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Authors: Alexandru George Floares

Abstract:

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1566 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree

Authors: S. Ghorbani, N. I. Polushin

Abstract:

In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.

Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
1565 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
1564 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
1563 Knowledge and Attitude among Women and Men in Decision Making on Pap Smear Screening in Kelantan, Malaysia

Authors: Siti Waringin Oon, Rashidah Shuib, Siti Hawa Ali, Nik Hazlina Nik Hussain, Juwita Shaaban, Harmy Mohd Yusoff

Abstract:

This paper explores the knowledge and attitude of women and men in decision making on pap smear screening. This qualitative study recruited 52 respondents with 44 women and 8 men, using the purposive sampling with snowballing technique through indepth interviews. This study demonstrates several key findings: Female respondents have better knowledge compared to male. Most of the women perceived that pap smear screening is beneficial and important, but to proceed with the test is still doubtful. Male respondents were supportive in terms of sending their spouses to the health facilities or give more freedom to their wives to choose and making decision on their own health due to prominent reason that women know best on their own health. It is expected that the results from this study will provide useful guideline for healthcare providers to prepare any action/intervention to provide an extensive education to improve people-s knowledge and attitude towards pap smear.

Keywords: Attitude, decision making, knowledge, pap smearscreening..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1562 Hybrid Machine Learning Approach for Text Categorization

Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite

Abstract:

Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.

Keywords: Text categorization, decision trees, neural networks, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1561 Influence of Social Factors and Motives on Commitment of Sport Events Volunteers

Authors: Farideh Sharififar, Zahra Jamalian, Reza Nikbakhsh, Zahra Nobakht Ramezani

Abstract:

In sport, human resources management gives special attention to method of applying volunteers, their maintenance, and participation of volunteers with each other and management approaches for better operation of events celebrants. The recognition of volunteers- characteristics and motives is important to notice, because it makes the basis of their participation and commitment at sport environment. The motivation and commitment of 281 volunteers were assessed using the organizational commitment scale, motivation scale and personal characteristics questionnaire.The descriptive results showed that; 64% of volunteers were women with age average 21/24 years old. They were physical education student, single (71/9%), without occupation (53%) and with average of 5 years sport experience. Their most important motivation was career factor and the most important commitment factor was normative factor. The results of examining the hypothesized showed that; age, sport experience and education are effective in the amount of volunteers- commitment. And the motive factors such as career, material, purposive and protective factors also have the power to predict the amount of sports volunteers- commitment value. Therefore it is recommended to provide possible opportunities for volunteers and carrying out appropriate instructional courses by events executive managers.

Keywords: Sport Volunteers, Motivation, Organizational Commitment, Sport Event

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832
1560 Predicting Protein Function using Decision Tree

Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur

Abstract:

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Keywords: Sequence Derived Features, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
1559 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
1558 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection

Authors: C. Ardil

Abstract:

Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.

Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
1557 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
1556 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940