Search results for: Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.
464 Asymptotic Approach for Rectangular Microstrip Patch antenna With Magnetic Anisotropy and Chiral Substrate
Authors: Zebiri Chemseddine, Benabdelaziz Fatiha
Abstract:
The effect of a chiral bianisotropic substrate on the complex resonant frequency of a rectangular microstrip resonator has been studied on the basis of the integral equation formulation. The analysis is based on numerical resolution of the integral equation using Galerkin procedure for moment method in the spectral domain. This work aim first to study the effect of the chirality of a bianisotopic substrate upon the resonant frequency and the half power bandwidth, second the effect of a magnetic anisotropy via an asymptotic approach for very weak substrate upon the resonant frequency and the half power bandwidth has been investigated. The obtained results are compared with previously published work [11-9], they were in good agreement.Keywords: Microstrip antenna, bianisotropic media, resonant frequency, moment method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603463 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux
Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918462 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis
Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping
Abstract:
The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.Keywords: Free energy, lattice distortion, magnetic anisotropy, magnetostriction, morphotropic phase boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252461 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption
Authors: G. Sarojamma, K. Vendabai
Abstract:
An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.
Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822460 Electromagnetic Field Modeling in Human Tissue
Authors: Iliana Marinova, Valentin Mateev
Abstract:
For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.Keywords: electromagnetic field, finite element method, humantissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295459 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths
Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi
Abstract:
Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997458 A Novel Switched Reluctance Motor with U-type Segmental Rotor Pairs: Design, Analysis and Simulation Results
Abstract:
This paper describes the design and modeling procedure of a novel 5-phase segment type switched reluctance motor (ST-SRM) under simultaneous two-phase (bipolar) excitation of windings. The rotor cores of ST-SRM are embedded in an aluminum block as well as to improve the performance characteristics. The magnetic circuit of the produced ST-SRM is constructed so that the magnetic flux paths are short and exclusive to each phase, thereby minimizing the commutation switching and eddy current losses in the laminations. The design and simulation principles presented apply primarily to conventional SRM and ST-SRM. It is proved that the novel 5-phase switched reluctance motor under two-phase excitation is superior among the criteria used in comparison. The purposed model is particularly well suited for high torque and weight constrained applications such as automobiles, aerospace and military applications.Keywords: Segmental Rotor Pairs, Two-phase Excitation, Commutation Switching, Aluminum Block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265457 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition
Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid
Abstract:
A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940456 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278455 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory
Authors: Ping He
Abstract:
This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763454 Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method
Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour
Abstract:
We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009453 Improved Robust Stability and Stabilization Conditions of Discrete-time Delayed System
Authors: Zixin Liu
Abstract:
The problem of robust stability and robust stabilization for a class of discrete-time uncertain systems with time delay is investigated. Based on Tchebychev inequality, by constructing a new augmented Lyapunov function, some improved sufficient conditions ensuring exponential stability and stabilization are established. These conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Compared with some previous results derived in the literature, the new obtained criteria have less conservatism. Two numerical examples are provided to demonstrate the improvement and effectiveness of the proposed method.
Keywords: Robust stabilization, robust stability, discrete-time system, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531452 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: Substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594451 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569450 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: F. Ammari, M. Chenouf
Abstract:
Synthesis of gold nanoparticles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; various gold loading percentage 1, 2 and 5% were used for gold nanoparticles preparation. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in Na-montmorillonite were used as catalysts for the reduction of 4- nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirmed directly the gold nanoparticles formation. The XRD and N2 adsorption results showed the formation of gold nanoparticles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2% gold loading percentage. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4- nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Namontmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1%Au-Na-montmorillonite and within 3 min for 2%Au-Na-montmorillonite.Keywords: Chemical reduction, gold, montmorillonite, nanoparticles, 4-nitrophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110449 An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite
Authors: S. Malathi, P. Seenuvasakumaran
Abstract:
Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).Keywords: Sol-gel, dislocation density, energy band gap, VSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794448 A Comparison Study of a Symmetry Solution of Magneto-Elastico-Viscous Fluid along a Semi- Infinite Plate with Homotopy Perturbation Method and4th Order Runge–Kutta Method
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4th order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compared with each other, showing excellent agreement. The effects of the magnetic parameter and Prandtl number on velocity field, shear stress, temperature and heat transfer are discussed as well.
Keywords: Electrically conducting elastico-viscous fluid, symmetry solution, Homotopy perturbation method, Padé approximation, 4th order Runge–Kutta, Maple
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468447 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds
Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia
Abstract:
Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593446 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.
Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918445 Bi-axial Stress Effects on Barkhausen-Noise
Authors: G. Balogh, I. A. Szabó, P. Z. Kovács
Abstract:
Mechanical stress has a strong effect on the magnitude of the Barkhausen-noise in structural steels. Because the measurements are performed at the surface of the material, for a sample sheet, the full effect can be described by a biaxial stress field. The measured Barkhausen-noise is dependent on the orientation of the exciting magnetic field relative to the axis of the stress tensor. The sample inhomogenities including the residual stress also modifies the angular dependence of the measured Barkhausen-noise. We have developed a laboratory device with a cross like specimen for bi-axial bending. The measuring head allowed performing excitations in two orthogonal directions. We could excite the two directions independently or simultaneously with different amplitudes. The simultaneous excitation of the two coils could be performed in phase or with a 90 degree phase shift. In principle this allows to measure the Barkhausen-noise at an arbitrary direction without moving the head, or to measure the Barkhausen-noise induced by a rotating magnetic field if a linear superposition of the two fields can be assumed.
Keywords: Barkhausen-noise, Bi-axial stress, Stress dependency, Stress measuring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187444 Impact of Carbonation on Lime-Treated High Plasticity Index Clayey Soils
Authors: Saurav Bhattacharjee, Syam Nair
Abstract:
Lime stabilization is a sustainable and economically viable option to address strength deficiencies of subgrade soils. However, exposure of stabilized layers to environmental elements can lead to a reduction in post-stabilization strength gain expected in these layers. The current study investigates the impact of carbonation on the strength properties of lime-treated soils. Manufactured soils prepared using varying proportions of bentonite silica mixtures were used in the study. Lime-treated mixtures were exposed to different atmospheric conditions created by varying the concentrations of CO₂ in the testing chamber. The impact of CO₂ diffusion was identified based on changes in carbonate content and unconfined compressive strength (UCS) properties. Changes in soil morphology were also investigated as part of the study. The rate of carbonation was observed to vary polynomially (2nd order) with exposure time. The strength properties of the mixes were observed to decrease with exposure time.
Keywords: Manufactured soil, carbonation, morphology, unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138443 Permanent Magnet Synchronous Generator – Unsymmetrical Point Operation
Authors: P. Pistelok
Abstract:
The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase was shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed.
Keywords: Permanent magnet generator, permanent magnets, vibration, course of torque, single phase work, asymmetrical three phase work.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376442 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.
Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525441 MRI Compatible Fresnel Zone Plates made of Polylactic Acid
Authors: Daniel Tarrazó-Serrano, Sergio Pérez-López, Sergio Castiñeira-Ibáñez, Pilar Candelas, Constanza Rubio
Abstract:
Zone Plates (ZPs) are used in many areas of physics where planar fabrication is advantageous in comparison with conventional curved lenses. There are several types of ZPs, such as the well-known Fresnel ZPs or the more recent Fractal ZPs and Fibonacci ZPs. The material selection of the lens plays a very important role in the beam modulation control. This work presents a comparison between two Fresnel ZP made from different materials in the ultrasound domain: Polylactic Acid (PLA) and brass. PLA is the most common material used in commercial 3D-printers due to its high design flexibility and low cost. Numerical simulations based on Finite Element Method (FEM) and experimental results are shown, and they prove that the focusing capabilities of brass ZPs and PLA ZPs are similar. For this reason, PLA is proposed as a Magnetic Resonance Imaging (MRI) compatible material with great potential for therapeutic ultrasound focusing applications.Keywords: Fresnel zone plate, magnetic resonance imaging polylactic acid, ultrasound focusing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817440 Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control
Authors: N. H. Mvungi
Abstract:
Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.Keywords: Sensorless, SR motor, saturation effects, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190439 Advanced Palliative Aquatics Care Multi-Device AuBento for Symptom and Pain Management by Sensorial Integration and Electromagnetic Fields: A Preliminary Design Study
Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, J.C. Mairesse Siluk, I. F. Minello, F. dos Santos de Oliveira
Abstract:
Background: Although palliative care policies and services have been developed, research in this area continues to lag. An integrated model of palliative care is suggested, which includes complementary and alternative services aimed at improving the well-being of patients and their families. The palliative aquatics care multi-device (AuBento) uses several electromagnetic techniques to decrease pain and promote well-being through relaxation and interaction among patients, specialists, and family members. Aim: The scope of this paper is to present a preliminary design study of a device capable of exploring the various existing theories on the biomedical application of magnetic fields. This will be achieved by standardizing clinical data collection with sensory integration, and adding new therapeutic options to develop an advanced palliative aquatics care, innovating in symptom and pain management. Methods: The research methodology was based on the Work Package Methodology for the development of projects, separating the activities into seven different Work Packages. The theoretical basis was carried out through an integrative literature review according to the specific objectives of each Work Package and provided a broad analysis, which, together with the multiplicity of proposals and the interdisciplinarity of the research team involved, generated consistent and understandable complex concepts in the biomedical application of magnetic fields for palliative care. Results: Aubento ambience was idealized with restricted electromagnetic exposure (avoiding data collection bias) and sensory integration (allowing relaxation associated with hydrotherapy, music therapy, and chromotherapy or like floating tank). This device has a multipurpose configuration enabling classic or exploratory options on the use of the biomedical application of magnetic fields at the researcher's discretion. Conclusions: Several patients in diverse therapeutic contexts may benefit from the use of magnetic fields or fluids, thus validating the stimuli to clinical research in this area. A device in controlled and multipurpose environments may contribute to standardizing research and exploring new theories. Future research may demonstrate the possible benefits of the aquatics care multi-device AuBento to improve the well-being and symptom control in palliative care patients and their families.Keywords: Advanced palliative aquatics care, magnetic field therapy, medical device, research design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617438 Stabilization of Clay Soil Using A-3 Soil
Authors: Mohammed Mustapha Alhaji, Salawu Sadiku
Abstract:
A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402437 Orbit Propagator and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission
Authors: Lv Meibo, Naqvi Najam Abbas, Hina Arshad, Li YanJun
Abstract:
This research contribution is drafted to present the orbit design, orbit propagator and geomagnetic field estimator for the nanosatellites specifically for the upcoming CUBESAT, ICUBE-1 of the Institute of Space Technology (IST), Islamabad, Pakistan. The ICUBE mission is designed for the low earth orbit at the approximate height of 700KM. The presented research endeavor designs the Keplarian elements for ICUBE-1 orbit while incorporating the mission requirements and propagates the orbit using J2 perturbations, The attitude determination system of the ICUBE-1 consists of attitude determination sensors like magnetometer and sun sensor. The Geomagnetic field estimator is developed according to the model of International Geomagnetic Reference Field (IGRF) for comparing the magnetic field measurements by the magnetometer for attitude determination. The output of the propagator namely the Keplarians position and velocity vectors and the magnetic field vectors are compared and verified with the same scenario generated in the Satellite Tool Kit (STK).
Keywords: CUBESAT, Geomagnetic Field, ICUBE-1, Orbit Propagator, Satellite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3611436 Delay-independent Stabilization of Linear Systems with Multiple Time-delays
Authors: Ping He, Heng-You Lan, Gong-Quan Tan
Abstract:
The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763435 Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers
Authors: R. Eslami Farsani, A. Shokuhfar, A. Sedghi
Abstract:
Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.Keywords: Modified Commercial PAN Fibers, Stabilization, Carbonization, Carbon Fibers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919