Search results for: Isolated speech signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1188

Search results for: Isolated speech signals

978 Phylogenetic Characterization of Atrazine-Degrading Bacteria Isolated from Agricultural Soil in Eastern Thailand

Authors: Sawangjit Sopid

Abstract:

In this study sugarcane field soils with a long history of atrazine application in Chachoengsao and Chonburi provinces have been explored for their potential of atrazine biodegradation. For the atrazine degrading bacteria isolation, the soils used in this study named ACS and ACB were inoculated in MS-medium containing atrazine. Six short rod and gram-negative bacterial isolates, which were able to use this herbicide as a sole source of nitrogen, were isolated and named as ACS1, ACB1, ACB3, ACB4, ACB5 and ACB6. From the 16S rDNA nucleotide sequence analysis, the isolated bacteria ACS1 and ACB4 were identified as Rhizobium sp. with 89.1-98.7% nucleotide identity, ACB1 and ACB5 were identified as Stenotrophomonas sp. with 91.0-92.8% nucleotide identity, whereas ACB3 and ACB6 were Klebsiella sp. with 97.4-97.8% nucleotide identity.

Keywords: Atrazine-degrading bacteria, bioremediation, Thai isolate bacteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
977 Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography

Authors: Y. Kumru, K. Enhos, H. Köymen

Abstract:

In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 µm size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 µm in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions.

Keywords: Coded excitation, complementary Golay codes, DiPhAS, medical ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
976 Field-Programmable Gate Array Based Tester for Protective Relay

Authors: H. Bentarzi, A. Zitouni

Abstract:

The reliability of the power grid depends on the successful operation of thousands of protective relays. The failure of one relay to operate as intended may lead the entire power grid to blackout. In fact, major power system failures during transient disturbances may be caused by unnecessary protective relay tripping rather than by the failure of a relay to operate. Adequate relay testing provides a first defense against false trips of the relay and hence improves power grid stability and prevents catastrophic bulk power system failures. The goal of this research project is to design and enhance the relay tester using a technology such as Field Programmable Gate Array (FPGA) card NI 7851. A PC based tester framework has been developed using Simulink power system model for generating signals under different conditions (faults or transient disturbances) and LabVIEW for developing the graphical user interface and configuring the FPGA. Besides, the interface system has been developed for outputting and amplifying the signals without distortion. These signals should be like the generated ones by the real power system and large enough for testing the relay’s functionality. The signals generated that have been displayed on the scope are satisfactory. Furthermore, the proposed testing system can be used for improving the performance of protective relay.

Keywords: Amplifier class D, FPGA, protective relay, tester.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
975 Matrix-Interleaved Serially Concatenated Block Codes for Speech Transmission in Fixed Wireless Communication Systems

Authors: F. Mehran

Abstract:

In this paper, we study a class of serially concatenated block codes (SCBC) based on matrix interleavers, to be employed in fixed wireless communication systems. The performances of SCBC¬coded systems are investigated under various interleaver dimensions. Numerical results reveal that the matrix interleaver could be a competitive candidate over conventional block interleaver for frame lengths of 200 bits; hence, the SCBC coding based on matrix interleaver is a promising technique to be employed for speech transmission applications in many international standards such as pan-European Global System for Mobile communications (GSM), Digital Cellular Systems (DCS) 1800, and Joint Detection Code Division Multiple Access (JD-CDMA) mobile radio systems, where the speech frame contains around 200 bits.

Keywords: Matrix Interleaver, serial concatenated block codes (SCBC), turbo codes, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
974 Anti-microbial Activity of Aristolochic Acid from Root of Aristolochia bracteata Retz

Authors: S. Angalaparameswari, T.S. Mohamed Saleem, M. Alagusundaram, S. Ramkanth, V.S. Thiruvengadarajan, K. Gnanaprakash, C. Madhusudhana Chetty, G. Pratheesh

Abstract:

The present research was designed to investigate the anti-microbial activity of aristolochic acid from the root of Aristolochia bracteata. From the methanolic & ethyl extract extracts of Aristolochia bracteata aristolochic acid I was isolated and conformed through IR, NMR & MS. The percentage purity of aristolochic acid I was determined by UV & HPLC method. Antibacterial activity of extracts of Aristolochia bracteata and the isolated compound was determined by disc diffusion method. The results reveled that the isolated aristolochic acid from methanolic extract was more pure than the compound from ethyl acetate extract. The various extracts (500μg/disc) of Aristolochia bracteata showed moderate antibacterial activity with the average zone of inhibition of 7-18 mm by disc diffusion method. Among the extracts, ethyl acetate & methanol extracts were shown good anti-microbial activity and the growth of E.coli (18 mm) was strongly inhibited. Microbial assay of isolated compound (Aristolochic acid I) from ethyl acetate & methanol extracts were shown good antimicrobial activity and the zone of inhibition of both at higher concentration 50 μg/ml was similar with the standard aristolochic acid. It may be concluded that the isolated compound of aristolochic acid I has good anti-bacterial activity.

Keywords: Aristolochic acid I, Anti-microbial activity, Aristolochia bracteata, Bacillus subtilis, E.coli

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
973 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.

Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
972 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
971 Behaviour of Base-Isolated Structures with High Initial Isolator Stiffness

Authors: Ajay Sharma, R.S. Jangid

Abstract:

Analytical seismic response of multi-story building supported on base isolation system is investigated under real earthquake motion. The superstructure is idealized as a shear type flexible building with lateral degree-of-freedom at each floor. The force-deformation behaviour of the isolation system is modelled by the bi-linear behaviour which can be effectively used to model all isolation systems in practice. The governing equations of motion of the isolated structural system are derived. The response of the system is obtained numerically by step-by-method under three real recorded earthquake motions and pulse motions associated in the near-fault earthquake motion. The variation of the top floor acceleration, interstory drift, base shear and bearing displacement of the isolated building is studied under different initial stiffness of the bi-linear isolation system. It was observed that the high initial stiffness of the isolation system excites higher modes in base-isolated structure and generate floor accelerations and story drift. Such behaviour of the base-isolated building especially supported on sliding type of isolation systems can be detrimental to sensitive equipment installed in the building. On the other hand, the bearing displacement and base shear found to reduce marginally with the increase of the initial stiffness of the initial stiffness of the isolation system. Further, the above behaviour of the base-isolated building was observed for different parameters of the bearing (i.e. post-yield stiffness and characteristic strength) and earthquake motions (i.e. real time history as well as pulse type motion).

Keywords: base isolation, base shear, bi-linear, earthquake, floor accelerations, inter-story drift, multi-story building, pulsemotion, stiffness ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
970 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss

Abstract:

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.

Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
969 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: Building, collapse, factor of safety, isolated footing, PLAXIS 2D, slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
968 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
967 Multimodal Database of Emotional Speech, Video and Gestures

Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari

Abstract:

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

Keywords: Body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
966 Optimized Hybrid Renewable Energy System of Isolated Islands in Smart-Grid Scenario - A Case Study in Indian Context

Authors: Aurobi Das, V. Balakrishnan

Abstract:

This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of the system to optimize the utilization of the hybrid renewable energy sources and also a proposition of how theses isolated Hybrid Renewable Energy Systems at remote islands can be grid-connected is analyzed towards vision of green smart-grid.

Keywords: Intelligent controller, hybrid renewable, solar photo voltaic, smart-grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
965 High Speed Video Transmission for Telemedicine using ATM Technology

Authors: J. P. Dubois, H. M. Chiu

Abstract:

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Keywords: ATM, multiplexing, queueing, telemedicine, VBR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
964 Pulse Oximeter Concept for Vascular Occlusion Test

Authors: Fatanah M. Suhaimi, J. Geoffrey Chase, Christopher G. Pretty, Rodney Elliott, Geoffrey M. Shaw

Abstract:

Microcirculatory dysfunction is very common in sepsis and may results in organ failure and increased risk of death. Analyzing oxygen utilization can potentially assess microcirculation function of an individual. In this study, a modified pulse oximeter is used to extract information signals due to absorption of red (R) and infrared (IR) light. IR and R signal are related to the overall blood volume and reduced hemoglobin, respectively. Differences between these two signals thus represent the amount of oxygenated hemoglobin. Avascular occlusion test has been conducted on healthy individuals to validate the pulse oximeter concept. In this test, both R and IR signals rapidly changed according to the occlusion process. The pulse oximeter concept presented is capable of extracting valuable information to assess microcirculation condition. Implementing this concept on ICU patients has the potential to aid sepsis diagnosis and provide more accurate tracking of patient state and sepsis status.

Keywords: Microcirculation, sepsis, sepsis diagnosis, oxygen extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
963 On Pseudo-Random and Orthogonal Binary Spreading Sequences

Authors: Abhijit Mitra

Abstract:

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

Keywords: Code division multiple access, pseudo-noise codes, maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6054
962 Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil

Authors: A. Fazilah, I. Darah, I. Noraznawati

Abstract:

Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as Acinetobacter sp. P3d, Bacillus sp. P4a and Pseudomonas sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their phenanthrene degradation was evaluated by gas chromatography. Among the monocultures, Pseudomonas sp. P6 exhibited 58.71% activity compared to Acinetobacter sp. P3d and Bacillus sp. P4a which were 56.97% and 53.05%, respectively after 28 days of cultivation. All consortia showed high phenanthrene elimination which were 95.64, 79.37, 87.19, 79.21% for Consortia A, B, C and D, respectively. The results indicate that all of the bacteria isolated may effectively degrade target chemical and have a promising application in bioremediation of hydrocarbon contaminated soil purposes.

Keywords: Acinetobacter sp. P3d, Bacillus sp. P4a, consortia, phenanthrene, Pseudomonas sp. P6.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
961 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
960 A High Accuracy Measurement Circuit for Soil Moisture Detection

Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi

Abstract:

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4024
959 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
958 Electron Spin Resonance of Conduction Electrons and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism

Authors: S. N. Ekbote, G. K. Padam, Manju Arora

Abstract:

Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)2Sr2Ca2Cu3O10-x (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.

Keywords: Bi-2223 superconductor, electron spin resonance of conduction electrons, electron spin resonance, Exchange interactions, spin waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
957 Molecular Identification of ESBL Genesbla GES-1, blaVEB-1, blaCTX-M blaOXA-1, blaOXA-4,blaOXA-10 and blaPER-1 in Pseudomonas aeruginosa Strains Isolated from Burn Patientsby PCR, RFLP and Sequencing Techniques

Authors: Fereshteh Shacheraghi, Mohammad Reza Shakibaie, Hanieh Noveiri

Abstract:

Fourty one strains of ESBL producing P.aeruginosa which were previously isolated from burn patients in Kerman University general hospital, Iran were subjected to PCR, RFLP and sequencing in order to determine the type of extended spectrum β- lactamases (ESBL), the restriction digestion pattern and possibility of mutation among detected genes. DNA extraction was carried out by phenol chloroform method. PCR for detection of bla genes was performed using specific primer for each gene. Restriction Fragment Length Polymorphism (RFLP) for ESBL genes was carried out using EcoRI, NheI, PVUII, EcoRV, DdeI, and PstI restriction enzymes. The PCR products were subjected to direct sequencing of both the strands for identification of the ESBL genes.The blaCTX-M, blaVEB-1, blaPER-1, blaGES-1, blaOXA-1, blaOXA-4 and blaOXA-10 genes were detected in the (n=1) 2.43%, (n=41)100%, (n=28) 68.3%, (n=10) 24.4%, (n=29) 70.7%, (n=7)17.1% and (n=38) 92.7% of the ESBL producing isolates respectively. The RFLP analysis showed that each ESBL gene has identical pattern of digestion among the isolated strains. Sequencing of the ESBL genes confirmed the genuinety of PCR products and revealed no mutation in the restriction sites of the above genes. From results of the present investigation it can be concluded that blaVEB-1 and blaCTX-M were the most and the least frequently isolated ESBL genes among the P.aeruginosa strains isolated from burn patients. The RFLP and sequencing analysis revealed that same clone of the bla genes were indeed existed among the antibiotic resistant strains.

Keywords: ESBL genes, PCR, RFLP, Sequencing, P.aeruginosa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
956 A Simplified Single Correlator Rake Receiver for CDMA Communications

Authors: K. Murali Krishna, Abhijit Mitra, C. Ardil

Abstract:

This paper presents a single correlator RAKE receiver for direct sequence code division multiple access (DS-CDMA) systems. In conventional RAKE receivers, multiple correlators are used to despread the multipath signals and then to align and combine those signals in a later stage before making a bit decision. The simplified receiver structure presented here uses a single correlator and single code sequence generator to recover the multipaths. Modified Walsh- Hadamard codes are used here for data spreading that provides better uncorrelation properties for the multipath signals. The main advantage of this receiver structure is that it requires only a single correlator and a code generator in contrary to the conventional RAKE receiver concept with multiple correlators. It is shown in results that the proposed receiver achieves better bit error rates in comparison with the conventional one for more than one multipaths.

Keywords: RAKE receiver, Code division multiple access, ModifiedWalsh-Hadamard codes, Single correlator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
955 Multiple Mental Thought Parametric Classification: A New Approach for Individual Identification

Authors: Ramaswamy Palaniappan

Abstract:

This paper reports a new approach on identifying the individuality of persons by using parametric classification of multiple mental thoughts. In the approach, electroencephalogram (EEG) signals were recorded when the subjects were thinking of one or more (up to five) mental thoughts. Autoregressive features were computed from these EEG signals and classified by Linear Discriminant classifier. The results here indicate that near perfect identification of 400 test EEG patterns from four subjects was possible, thereby opening up a new avenue in biometrics.

Keywords: Autoregressive, Biometrics, Electroencephalogram, Linear discrimination, Mental thoughts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
954 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
953 SySRA: A System of a Continuous Speech Recognition in Arab Language

Authors: Samir Abdelhamid, Noureddine Bouguechal

Abstract:

We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.

Keywords: Continuous speech recognition, lexical analyzer, phonetic decoding, phonetic lattice, vocal signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
952 Sperm Whale Signal Analysis: Comparison using the Auto Regressive model and the Daubechies 15 Wavelets Transform

Authors: Olivier Adam, Maciej Lopatka, Christophe Laplanche, Jean-François Motsch

Abstract:

This article presents the results using a parametric approach and a Wavelet Transform in analysing signals emitting from the sperm whale. The extraction of intrinsic characteristics of these unique signals emitted by marine mammals is still at present a difficult exercise for various reasons: firstly, it concerns non-stationary signals, and secondly, these signals are obstructed by interfering background noise. In this article, we compare the advantages and disadvantages of both methods: Auto Regressive models and Wavelet Transform. These approaches serve as an alternative to the commonly used estimators which are based on the Fourier Transform for which the hypotheses necessary for its application are in certain cases, not sufficiently proven. These modern approaches provide effective results particularly for the periodic tracking of the signal's characteristics and notably when the signal-to-noise ratio negatively effects signal tracking. Our objectives are twofold. Our first goal is to identify the animal through its acoustic signature. This includes recognition of the marine mammal species and ultimately of the individual animal (within the species). The second is much more ambitious and directly involves the intervention of cetologists to study the sounds emitted by marine mammals in an effort to characterize their behaviour. We are working on an approach based on the recordings of marine mammal signals and the findings from this data result from the Wavelet Transform. This article will explore the reasons for using this approach. In addition, thanks to the use of new processors, these algorithms once heavy in calculation time can be integrated in a real-time system.

Keywords: Autoregressive model, Daubechies Wavelet, Fourier Transform, marine mammals, signal processing, spectrogram, sperm whale, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
951 New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring

Authors: Jaharah A. Ghani, Muhammad Rizal, Ahmad Sayuti, Mohd Zaki Nuawi, Mohd Nizam Ab. Rahman, Che Hassan Che Haron

Abstract:

This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.

Keywords: mathematical model, I-kaz method, tool wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
950 Weight Functions for Signal Reconstruction Based On Level Crossings

Authors: Nagesha, G. Hemantha Kumar

Abstract:

Although the level crossing concept has been the subject of intensive investigation over the last few years, certain problems of great interest remain unsolved. One of these concern is distribution of threshold levels. This paper presents a new threshold level allocation schemes for level crossing based on nonuniform sampling. Intuitively, it is more reasonable if the information rich regions of the signal are sampled finer and those with sparse information are sampled coarser. To achieve this objective, we propose non-linear quantization functions which dynamically assign the number of quantization levels depending on the importance of the given amplitude range. Two new approaches to determine the importance of the given amplitude segment are presented. The proposed methods are based on exponential and logarithmic functions. Various aspects of proposed techniques are discussed and experimentally validated. Its efficacy is investigated by comparison with uniform sampling.

Keywords: speech signals, sampling, signal reconstruction, asynchronousdelta modulation, non-linear quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
949 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186