Search results for: Free-machining alloy.
94 A Strategy for a Robust Design of Cracked Stiffened Panels
Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano
Abstract:
This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.
Keywords: Residual strength, R-Curve, Gurson model, SDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154493 Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys
Authors: J. Davoodi , J. Moradi
Abstract:
The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.Keywords: Pd-Rh alloy; Mechanical properties; Moleculardynamics simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160292 Metallographic Analysis of Laser and Mechanically Formed HSLA Steel
Authors: L.C. Kgomari, R.K.K.Mbaya
Abstract:
This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.Keywords: Laser, Forming, Microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181791 Research on the Micro Pattern forming of Spiral Grooves in a Dynamic Thrust Bearing
Authors: Sol-Kil Oh, Hye-Jin Lee, Jung-Han Song, Kyoung-Tae Kim, Nak-Kyu Lee, Jong-Ho Kim
Abstract:
This paper deals with a novel technique for the fabrication of Spiral grooves in a dynamic thrust bearing. The main scheme proposed in this paper is to fabricate the microgrooves using desktop forming system. This process has advantages compared to the conventional electro-chemical machining in the viewpoint of a higher productivity. For this reason, a new testing apparatus is designed and built for press forming microgrooves on a surface of the thrust bearing. The material used in this study is sintered Cu-Fe alloy. The effects of the forming load on the performance of micro press forming are experimentally investigated. From the experimental results, formed depths are closed to the target ones with increasing the forming load.Keywords: Desktop forming system, Fluid dynamic bearing, Thrust bearing, Microgroove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146990 Performance of InGaN/GaN Laser Diode Based on Quaternary Alloys Stopper and Superlattice Layers
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The optical properties of InGaN/GaN laser diode based on quaternary alloys stopper and superlattice layers are numerically studied using ISE TCAD (Integrated System Engineering) simulation program. Improvements in laser optical performance have been achieved using quaternary alloy as superlattice layers in InGaN/GaN laser diodes. Lower threshold current of 18 mA and higher output power and slope efficiency of 22 mW and 1.6 W/A, respectively, at room temperature have been obtained. The laser structure with InAlGaN quaternary alloys as an electron blocking layer was found to provide better laser performance compared with the ternary AlxGa1-xN blocking layer.
Keywords: Nitride semiconductors, InAlGaN quaternary, laserdiode, superlattice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205489 Wetting Behavior of Reactive and Non–Reactive Wetting of Liquids on Metallic Substrates
Authors: Pradeep Bhagawath, K.N. Prabhu, Satyanarayan
Abstract:
Wetting characteristics of reactive (Sn–0.7Cu solder) and non– reactive (castor oil) wetting of liquids on Cu and Ag plated Al substrates have been investigated. Solder spreading exhibited capillary, gravity and viscous regimes. Oils did not exhibit noticeable spreading regimes. Solder alloy showed better wettability on Ag coated Al substrate compared to Cu plating. In the case of castor oil, Cu coated Al substrate exhibited good wettability as compared to Ag coated Al substrates. The difference in wettability during reactive wetting of solder and non–reactive wetting of oils is attributed to the change in the surface energies of Al substrates brought about by the formation of intermetallic compounds (IMCs).Keywords: Wettability, contact angle, solder, castor oil, IMCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250288 Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)
Authors: Ajay Likhite, Prashant Parhad, D. R. Peshwe, S. U. Pathak
Abstract:
Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied.
Keywords: Austempered Ductile Iron, Carbidic Austempered Ductile Iron.Austenitization temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206887 Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method
Authors: J. Wozniak, M. Kostecki, K. Broniszewski, W. Bochniak, A. Olszyna
Abstract:
The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.Keywords: aluminum alloy, extrusion, metal matrix composites, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175186 Laser Welded Ni-Cr Dental Alloys Inspection
Authors: Porojan S., Sandu L., Topală F.
Abstract:
Minor problems arising from optimizations by welding of fixed prostheses frameworks can be identified by macroscopic and microscopic visual inspection. The purpose of this study was to highlight the visible discontinuities present in the laser welds of dental Ni-Cr alloys. Ni-Cr base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using cast plates, preliminary tests were conducted by laser welding. Macroscopic visual inspection was done carefully to assess the defects of the welding rib. Electron microscopy images allowed visualization of small discontinuities, which escapes visual inspection. Making comparison to Ni-Cr alloys taken in the experiment and laser welded, after visual analysis, the best welds appear for Heraenium NA alloy.Keywords: macroscopic visual inspection, electron microscopyimages, Ni-Cr dental alloys, laser welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156085 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: A. Vilutis, V. Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.
Keywords: Friction, composite, carbide, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7884 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel
Authors: Richard E. Miller
Abstract:
12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.
Keywords: Dissimilar materials, friction stir, welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221383 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation
Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina
Abstract:
The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.
Keywords: Bismuth addition, intermetallic compound, composition, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131582 Additional Considerations on a Sequential Life Testing Approach using a Weibull Model
Authors: D. I. De Souza, D. R. Fonseca, R. Rocha
Abstract:
In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Weibull sampling distribution. The minimum life will be considered equal to zero. We will again provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new type of a low alloy-high strength steel product. To estimate the shape and the scale parameters of the underlying Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.Keywords: Sequential Life Testing, Underlying Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138981 Fracture Location Characterizations of Dissimilar Friction Stir Welds
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
This paper reports the tensile fracture location characterizations of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper. The welds were produced using three shoulder diameter tools; namely, 15, 18 and 25 mm by varying the process parameters. The rotational speeds considered were 600, 950 and 1200 rpm while the feed rates employed were 50, 150 and 300 mm/min to represent the low, medium and high settings respectively. The tensile fracture locations were evaluated using the optical microscope to identify the fracture locations and were characterized. It was observed that 70% of the tensile samples failed in the Thermo Mechanically Affected Zone (TMAZ) of copper at the weld joints. Further evaluation of the fracture surfaces of the pulled tensile samples revealed that welds with low Ultimate Tensile Strength either have defects or intermetallics present at their joint interfaces.Keywords: fracture location, friction stir welding, intermetallics, metallography,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197280 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag- Ni (60/40) Contact Materials
Authors: Mohamed Akbi
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silvernickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196- 256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.
Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237879 Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Authors: M. Nazmunnahar, J. J. Del Val, A. Vimmrova, J. González
Abstract:
We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms=336K, Mf=328K, As=335K and Af=343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207 K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.Keywords: Structural transformation, as-cast ribbon, Heusler alloys, Magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260978 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V
Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana
Abstract:
The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will dropKeywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235477 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA
Authors: M. K. Pradhan, Mayank Meena, Shubham Sen, Arvind Singh
Abstract:
In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.Keywords: Material Removal Rate, Surface Roughness, Taguchi Method, Grey Relational Analysis, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222976 Roughness and Hardness of 60/40 Cu-Zn Alloy
Authors: Pavana Manvikar, G K Purohit
Abstract:
The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.
Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.
Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.
This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,
Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4
Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4
High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.
Keywords: Ball burnishing, surface roughness, micro-hardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253475 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143674 Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips
Authors: Ch. Nerl, M. Wimmer, P. Hofer, E. Kaschnitz
Abstract:
The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.
Keywords: Aluminium alloys, composite casting, compound casting, continuous casting, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316473 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes
Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze
Abstract:
A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.Keywords: Decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113772 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218571 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process
Authors: S. Ghorbani, N. I. Polushin
Abstract:
The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.
Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95770 Study of Tribological Behaviour of Al6061/Silicon Carbide/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques
Authors: Mohamed Zakaulla, A. R. Anwar Khan
Abstract:
Al6061 alloy base matrix, reinforced with particles of silicon carbide (10 wt %) and Graphite powder (1wt%), known as hybrid composites have been fabricated by liquid metallurgy route (stir casting technique) and optimized at different parameters like applied load, sliding speed and sliding distance by taguchi method. A plan of experiment generated through taguchi technique was used to perform experiments based on L27 orthogonal array. The developed ANOVA and regression equations are used to find the optimum coefficient of friction and wear under the influence of applied load, sliding speed and sliding distance. On the basis of “smaller the best” the dry sliding wear resistance was analysed and finally confirmation tests were carried out to verify the experimental results.Keywords: Analysis of variance, dry sliding wear, Hybrid composite, orthogonal array, Taguchi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270769 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.
Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87368 Carbide Structure and Fracture Toughness of High Speed Tool Steels
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
In the present study, M2 high speed steels were fabricated by using electro-slag rapid remelting process. Carbide structure was analysed and the fracture toughness and hardness were also measured after austenitization treatment at 1190 and 1210oC followed by tempering treatment at 535oC for billets with various diameters from 16 to 60 mm. Electro-slag rapid remelting (ESRR) process is an advanced ESR process combined by continuous casting and successfully employed in this study to fabricate a sound M2 high speed ingot. Three other kinds of commercial M2 high speed steels, produced by traditional method, were also analysed for comparison. Distribution and structure of eutectic carbides of the ESRR billet were found to be comparable to those of commercial alloy and so was the fracture toughness.
Keywords: High speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252467 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment
Authors: Ch. Thee, Junhua Dong, Wei Ke
Abstract:
The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurement were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25oC and 60% RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.Keywords: Atmospheric corrosion, EIS, low alloy, rust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195166 Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels
Authors: Sh. Hosseini, M. B. Limooei, M. Hossein Zade, E. Askarnia, Z. Asadi
Abstract:
Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.
Keywords: Manganese steel (Hadfield), heat treatment, austenising temperature, austenising time, quenching solution, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449865 Optimal Design of Motorcycle Crash Bar Using CAD and Finite Element Analysis
Authors: Sharon S. Wu, Yong S. Park
Abstract:
This project aims to study and evaluate the motorcycle crash bar, which is used to reduce injuries caused by side impacts to the motorcycle, and then develop an improved design using the engineering design process theory based on the current benchmark crash bar in order to lower the severity of motorcycle crash injuries. For this purpose, simulations for the crash bar are set up so that it travels at an angle towards a fixed concrete wall and collides at certain velocities. 3D CAD models are first designed in SolidWorks and dynamic crash simulations are then carried out using ANSYS to determine the lowest maximum Von-Mises stress over time and deformations by adjusting the parameters used in manufacturing the crash bar, including the velocity of the crash, material used, geometries with various radius fillets, and different thicknesses for the bar. The results of the simulation are used to determine the optimum parameters for a safer crash bar to withstand higher stress and deformation. Specifically, the von-Mises stress was reduced by at least 75% compared with the benchmark design by choosing aluminum alloy and a true unibar design.
Keywords: Crash bar, crash simulation, engineering design, motorcycle safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447