Search results for: Finite element method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9100

Search results for: Finite element method

8890 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.

Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
8889 Optimization of Car Seat Considering Whiplash Injury

Authors: Wookyung Baik, Seungchan Lee, Choongmin Jeong, Siwoo Kim, Myungwon Suh

Abstract:

Development of motor car safety devices has reduced fatality rates in car accidents. Yet despite this increase in car safety, neck injuries resulting from rear impact collisions, particularly at low speed, remain a primary concern. In this study, FEA(Finite Element Analysis) of seat was performed to evaluate neck injuries in rear impact. And the FEA result was verified by comparison with the actual test results. The dummy used in FE model and actual test is BioRID II which is regarded suitable for rear impact collision analysis. A threshold of the BioRID II neck injury indicators was also proposed to upgrade seat performance in order to reduce whiplash injury. To optimize the seat for a low-speed rear impact collision, a method was proposed, which is multi-objective optimization idea using DOE (Design of Experiments) results.

Keywords: Whiplash injury, Dynamic assessment, Finite element method, Optimization, DOE (Design of Experiments), WSM (Weighed Sum Method).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
8888 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads

Authors: Nawel Mezigheche, Abdelhacine Gouasmia, Allaeddine Athmani, Mouloud Merzoud

Abstract:

Masonry infill walls are inevitable in the selfsupporting structures, but their contribution in the resistance to earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of masonry infill walls behavior in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D Finite Element Analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load; the finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, we can so conclude that the filling brings an additional rigidity to the structure not to be neglected; it is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.

Keywords: Finite element, Masonry infill walls, Rigidity of the masonry, Tended diagonal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
8887 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
8886 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues

Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh

Abstract:

The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.

Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
8885 A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-Band Applications

Authors: R. Kiruthika, T. Shanmuganantham

Abstract:

A shaped single feed microstrip antenna is realized for C-Band and X-Band applications. The frequency range of C-band and X-band varies from 4 to 8 Gigahertz and 8 to 12 Gigahertz. The antenna operates under three frequency bands, one under C band and two under X-band applications. Defect on the ground called DGS (Defected Ground Structure) is made to enhance the distinctiveness of the antenna parameters. The design consists of DGS provided to improve the antenna performance. The substrate material used is of the Flame Retardant grade-4 (FR4) epoxy having high mechanical and electrical strength. The design and analysis was done using the FEM (Finite Element Method) based Ansoft HFSS (High Frequency Structural Simulator) Version 12. For the resonant frequencies of 5.21, 9.17 and 10.45, a value of reflection coefficient obtained is of -39.0, -16.0 and -30.7 dB respectively. Other constraints of antenna such as bandwidth, gain, directivity and Voltage Standing Wave Ratio (VSWR) are also conferred.

Keywords: Flame retardant-4 epoxy, finite element method, return loss, directivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
8884 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong

Abstract:

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
8883 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
8882 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen

Abstract:

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
8881 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm- Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solution of classical Sturm–Liouville problem is presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2994
8880 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
8879 Finite Element Modeling of Rotating Mixing of Toothpaste

Authors: Inamullah Bhatti, Ahsanullah Baloch, Khadija Qureshi

Abstract:

The objective of this research is to examine the shear thinning behaviour of mixing flow of non-Newtonian fluid like toothpaste in the dissolution container with rotating stirrer. The problem under investigation is related to the chemical industry. Mixing of fluid is performed in a cylindrical container with rotating stirrer, where stirrer is eccentrically placed on the lid of the container. For the simulation purpose the associated motion of the fluid is considered as revolving of the container, with stick stirrer. For numerical prediction, a time-stepping finite element algorithm in a cylindrical polar coordinate system is adopted based on semi-implicit Taylor-Galerkin/pressure-correction scheme. Numerical solutions are obtained for non-Newtonian fluids employing power law model. Variations with power law index have been analysed, with respect to the flow structure and pressure drop.

Keywords: finite element simulation, mixing fluid, rheology, rotating flow, toothpaste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
8878 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: Dynamic analysis, inverse Laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
8877 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
8876 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: Bridge, Finite Element, 3D model, Earthquake, Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
8875 Dynamic Analysis of Porous Media Using Finite Element Method

Authors: M. Pasbani Khiavi, A. R. M. Gharabaghi, K. Abedi

Abstract:

The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy's law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.

Keywords: Dynamic analysis, Interaction, Porous media, time domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
8874 Coupled Electromagnetic and Thermal Field Modeling of a Laboratory Busbar System

Authors: Tatyana R. Radeva, Ivan S. Yatchev, Dimitar N. Karastoyanov, Nikolay I. Stoimenov, Stanislav D. Gyoshev

Abstract:

The paper presents coupled electromagnetic and thermal field analysis of busbar system (of rectangular cross-section geometry) submitted to short circuit conditions. The laboratory model was validated against both analytical solution and experimental observations. The considered problem required the computation of the detailed distribution of the power losses and the heat transfer modes. In this electromagnetic and thermal analysis, different definitions of electric busbar heating were considered and compared. The busbar system is a three phase one and consists of aluminum, painted aluminum and copper busbar. The solution to the coupled field problem is obtained using the finite element method and the QuickField™ program. Experiments have been carried out using two different approaches and compared with computed results.

Keywords: Busbar system, coupled problems, finite element method, short-circuit currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2975
8873 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: Additive manufacturing, finite element method, molten pool dimensions, selective laser melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
8872 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness

Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract:

Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.

Keywords: Equivalent stiffness, finite element model, free vibration response, Stockbridge damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
8871 A Meshfree Solution of Tow-Dimensional Potential Flow Problems

Authors: I. V. Singh, A. Singh

Abstract:

In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.

Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
8870 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
8869 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
8868 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
8867 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: Delamination, forced vibration, finite element modelling, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
8866 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
8865 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong

Abstract:

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
8864 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: Experimentation, forging, process modeling, strain distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
8863 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: Finite element analysis, sliding door, experimental, verification, vehicle tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
8862 A TFETI Domain Decompositon Solver for Von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening

Authors: Martin Cermak, Stanislav Sysala

Abstract:

In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MatLab.

Keywords: Isotropic-kinematic hardening, TFETI, domain decomposition, parallel solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
8861 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930