Search results for: Effect of gas lift valve port size
6030 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils
Authors: Inci Develioglu, Hasan Firat Pulat
Abstract:
Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.
Keywords: Compressibility, consolidation, geotechnical properties, organic matter content, organic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19586029 Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations
Authors: Debojyoti Mitra
Abstract:
Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.Keywords: Stacks, relative positioning, drag and lift forces, resultant forces and supports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14996028 Comparison of the Effect of Two Rootstocks, Citrus macrophylla and Citrus volkameriana, on Water Productivity of Citrus “Orogrande” under Three Irrigation Doses
Authors: H. El Omari, A. Fall, T. Krochni
Abstract:
This present work mainly concerns the improvement of citrus water productivity in the Souss Massa region. The objective is to evaluate the effect of deficit irrigation applied during the fruit growth stage on fruit size, quality and yield of the Orogrande variety grafted on Citrus macrophylla and Citrus volkameriana. Three irrigation regimes were adopted, a control D0 of 3.6 l/h and two doses D1 (58% D0 = 2.1 l/h) and D2 (236% D0 = 8.5 l/h). The experimental design was a randomized complete block while keeping the same spacing between drippers, the same duration of irrigation and the beginning of trials (fruit growth stage). Results showed that at the end of the cycle from October 1, 2020, to September 30, 2021, a total water supply of 732 mm and 785 mm using the D1 dose was provided to trees of Orogrande variety, respectively grafted on Citrus macrophylla and Citrus volkameriana rootstocks. Citrus macrophylla presented largest fruit size of 38 mm compared to Citrus volkameriana (33 mm) with a significant difference (p = 0.007). Total soluble sugar (8°Brix) and juice content level (40%) were higher with the application of the D1 dose on both rootstocks. Yield of 36 Tons was not affected by the deficit irrigation. Reduction of water supply by 18% increases agronomic productivity (6 MAD/m³) and economic productivity (3 MAD/m³).
Keywords: Water productivity, Citrus, irrigation, fruit size, fruit quality, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116027 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.Keywords: Jet pump, air bubbles size, retention time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29916026 Torque Ripple Minimization in Switched Reluctance Motor Using Passivity-Based Robust Adaptive Control
Authors: M.M. Namazi, S.M. Saghaiannejad, A. Rashidi
Abstract:
In this paper by using the port-controlled Hamiltonian (PCH) systems theory, a full-order nonlinear controlled model is first developed. Then a nonlinear passivity-based robust adaptive control (PBRAC) of switched reluctance motor in the presence of external disturbances for the purpose of torque ripple reduction and characteristic improvement is presented. The proposed controller design is separated into the inner loop and the outer loop controller. In the inner loop, passivity-based control is employed by using energy shaping techniques to produce the proper switching function. The outer loop control is employed by robust adaptive controller to determine the appropriate Torque command. It can also overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. A 4KW 8/6 SRM with experimental characteristics that takes magnetic saturation into account is modeled, simulation results show that the proposed scheme has good performance and practical application prospects.Keywords: Switched Reluctance Motor, Port HamiltonianSystem, Passivity-Based Control, Torque Ripple Minimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16806025 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30356024 Investigating the Role of Community in Heritage Conservation through the Ladder of Citizen Participation Approach: Case Study, Port Said, Egypt
Authors: Sara S. Fouad, Omneya Messallam
Abstract:
Egypt has countless prestigious buildings and diversity of cultural heritage which are located in many cities. Most of the researchers, archaeologists, stakeholders and governmental bodies are paying more attention to the big cities such as Cairo and Alexandria, due to the country’s centralization nature. However, there are other historic cities that are grossly neglected and in need of emergency conservation. For instance, Port Said which is a former colonial city that was established in nineteenth century located at the edge of the northeast Egyptian coast between the Mediterranean Sea and the Suez Canal. This city is chosen because it presents one of the important Egyptian archaeological sites that archive Egyptian architecture of the 19th and 20th centuries. The historic urban fabric is divided into three main districts; the Arab, the European (Al-Afrang), and Port Fouad. The European district is selected to be the research case study as it has culture diversity, significant buildings, and includes the largest number of the listed heritage buildings in Port Said. Based on questionnaires and interviews, since 2003 several initiative trials have been taken by Alliance Francaise, the National Organization for Urban Harmony (NOUH), some Non-Governmental Organizations (NGOs), and few number of community residents to highlight the important city legacy and protect it from being demolished. Unfortunately, the limitation of their participation in decision-making policies is considered a crucial threat facing sustainable heritage conservation. Therefore, encouraging the local community to participate in their architecture heritage conservation would create a self-confident one, capable of making decisions for the city’s future development. This paper aims to investigate the role of the local inhabitants in protecting their buildings heritage through listing the community level of participations twice (2012 and 2018) in preserving their heritage based on the ladder citizen participation approach. Also, it is to encourage community participation in order to promote city architecture conservation, heritage management, and sustainable development. The methodology followed in this empirical research involves using several data assembly methods such as structural observations, questionnaires, interviews, and mental mapping. The questionnaire was distributed among 92 local inhabitants aged 18-60 years. However, the outset of this research at the beginning demonstrated the majority negative attitude, motivation, and confidence of the local inhabitants’ role to safeguard their architectural heritage. Over time, there was a change in the negative attitudes. Therefore, raising public awareness and encouraging community participation by providing them with a real opportunity to take part in the decision-making. This may lead to a positive relationship between the community residents and the built heritage, which is essential for promoting its preservation and sustainable development.
Keywords: Al-Afrang/Port Said, community participation, heritage conservation, ladder of citizen participation, NGOs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14916023 Stabilization of Angular-Shaped Riprap under Overtopping Flows
Authors: Dilavar Khan, Z. Ahmad
Abstract:
Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predictions of median size using these equations are not satisfactory and results show deviation by more than ±20% from the observed values. A multivariable power regression analysis is performed to propose a new equation relating the median size with unit discharge, bed slope, riprap thickness and coefficient of uniformity. The proposed relationship satisfactorily predicts the median angular stone size with ±20% error. Further, the required size of the rounded stone is more than the angular stone for the same unit discharge and the ratio increases with unit discharge and also with embankment slope of the riprap.Keywords: Angularity, Gradation, Riprap, Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26506022 Parametric Vibrations of Periodic Shells
Authors: B. Tomczyk, R. Mania
Abstract:
Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15186021 Photodetector Engineering with Plasmonic Properties
Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim
Abstract:
In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6186020 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer
Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna
Abstract:
The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ion removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ion was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ion. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ion due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ion removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ion removal (adsorption efficiency is 92.8%) from a waste printing developer.
Keywords: Adsorption efficiency, clayey pellet, metal ions, waste printing developer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21746019 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow
Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles
Abstract:
The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.Keywords: Baffles length, dished bottom, dead zone, flow field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20926018 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models
Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi
Abstract:
Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.
Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29326017 Influence of Turbulence Model, Grid Resolution and Free-Stream Turbulence Intensity on the Numerical Simulation of the Flow Field around an Inclined Flat Plate
Authors: M. Raciti Castelli, P. Cioppa, E. Benini
Abstract:
The flow field around a flat plate of infinite span has been investigated for several values of the angle of attack. Numerical predictions have been compared to experimental measurements, in order to examine the effect of turbulence model and grid resolution on the resultant aerodynamic forces acting on the plate. Also the influence of the free-stream turbulence intensity, at the entrance of the computational domain, has been investigated. A full campaign of simulations has been conducted for three inclination angles (9°, 15° and 30°), in order to obtain some practical guidelines to be used for the simulation of the flow field around inclined plates and discs.Keywords: CFD, lift, drag, flat plate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15836016 Grain Size Effect on Durability of Bioclogging Treatment
Authors: T. Farah, H. Souli, J. –M. Fleureau, G. Kermouche, J. –J. Fry, B. Girard, D. Aelbrecht
Abstract:
In this work, the bioclogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation-resaturation. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1” presents grain sizes between 0.4 and 4mm. The second material called "material 2" is composed of grains with size varying between 1 and 10mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-resaturation for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bioclogging treatment in this material.
Keywords: Bioclogging, Granulometry, permeability, nutrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20076015 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine
Authors: A. R. Binesh, S. Hossainpour
Abstract:
Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.Keywords: Diesel engine, Combustion, Pollution, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19476014 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach
Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie
Abstract:
The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.Keywords: End effect, structural-size torsion test, shear properties, timber engineering, binocular stereo vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13636013 Effect of Euphorbia Pulcherrima Leaf and Inflorescence Extract on Various Cytomorphological Parameters of Aspergillus fumigatus
Authors: Arti Goel, Kanika Sharma
Abstract:
Microorganisms can be removed, inhibited or killed by physical agents, physical processes or chemical agents but they have their inherent disadvantages such as increased resistance against antibiotics etc. Since, plants have endless ability to synthesize aromatic substances which act as the master agents for plant defense mechanisms against microorganisms, insects and herbivores. Thus, secondary metabolites or phytochemicals obtained from plants can be used as agents of disease control nowadays. In the present study effect of different concentrations of acetone fraction of leaves and alcohol fraction of inflorescence of Euphorbia pulcherrima on various cytomorphological parameters i.e. cell number, mycelium width, conidial size, conidiophore size etc. of Aspergillus fumigatus has been studied. Change in mycelium/ hyphal cell width, conidium size, conidiophore size etc. was measured with the help of a previously calibrated oculometer. To study effect on morphology, fungal mycelium along with conidiophore and conidia were stained with cotton blue and mounted in lactophenol and observed microscopically. Inhibitory action of the acetone extract of Euphorbia pulcherrima leaf on growth of Aspergillus fumigatus was investigated. Control containing extract free medium supported profuse growth of the fungus. Although decrease in growth was observed even at 3.95μg/ml but significant inhibition of growth was started at7.81μg/ml concentration of the extract. Complete inhibition was observed at 15.62μg/ml and above. Microscopic examination revealed that at 3.95, 7.81 and 15.62μg/ml extract concentration hyphal cell width was found to be increased from 1.44μm in control to 3.86, 5.24 and 8.98 μm respectively giving a beaded appearance to the mycelium. Vesicle size was reduced from 24.78x20.08μm (control) to 11.34x10.06μm at 3.95μg/ml concentration. At 7.81 and 15.62μg/ml concentration no phialides and sterigmata were observed. Inhibitory action of the alcohol extract of inflorescence on the growth of Aspergillus fumigatus was also studied. Control containing extract free medium supported profuse growth of the fungus. Although decrease in growth was observed even at 3.95μg/ml but complete inhibition was observed at 62.5μg/ml and above. Microscopic examination revealed that hyphal cell width of Aspergillus fumigatus was found to be increased from 1.67μm in control to 5.84μm at MIC i.e. at 62.5μg/ml. Vesicle size was reduced from 44.76x 24.22μm (control) to 11.36x 6.80μm at 15.62μg/ml concentrations. At 31.25 μg/ml and 62.5μg/ml concentration no phialides and sterigmata was found. Spore germination was completely found to be inhibited at 3.95μg/ml concentration. Similarly 92.87% reduction in vesicle size was observed at 15.62μg/ml concentration. It is evident from the results that plant extracts inhibit fungal growth and this inhibition is concentration dependent.
Keywords: Antimicrobial Activity, Aspergillus fumigatus, cytomorphology, Euphorbia pulcherrima.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21596012 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams
Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding
Abstract:
A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10056011 Thermal Diffusivity Measurement of Cadmium Sulphide Nanoparticles Prepared by γ-Radiation Technique
Authors: Azmi Zakaria, Reza Zamiri, Parisa Vaziri, Elias Saion, M. Shahril Husin
Abstract:
In this study we applied thermal lens (TL) technique to study the effect of size on thermal diffusivity of cadmium sulphide (CdS) nanofluid prepared by using γ-radiation method containing particles with different sizes. In TL experimental set up a diode laser of wavelength 514 nm and intensity stabilized He-Ne laser were used as the excitation source and the probe beam respectively, respectively. The experimental results showed that the thermal diffusivity value of CdS nanofluid increases when the of particle size increased.Keywords: Thermal diffusivity, nanofluids, thermal lens
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34186010 Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide, N-(tert-butyldimethylsilyl)-N-methyltrifluoroace tamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry
Authors: Jingming Wu, Ruikang Hu, Junqi Yue, Zhaoguang Yang, Lifeng Zhang
Abstract:
Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.Keywords: Fecal Sterols, Methylation, Silylation, BSTFA, MTBSTFA, TMSD, GC-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22606009 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames
Authors: R. Gary Black, Abolhassan Astaneh-Asl
Abstract:
The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries.
Keywords: Eccentrically Braced Frame, Lift Slab Construction, Seismic Retrofit, Shear Link, Steel Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25986008 Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide,N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry
Authors: Jingming Wu, Ruikang Hu, Junqi Yue, Zhaoguang Yang, Lifeng Zhang
Abstract:
Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.Keywords: Fecal Sterols, Methylation, Silylation, BSTFA, MTBSTFA, TMSD, GC-MS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31976007 A Study on the Effect of Valve Timing on the Combustion and Emission Characteristics for a 4-cylinder PCCI Diesel Engine
Authors: Joonsup Han, Jaehyeon Lee, Hyungmin Kim, Kihyung Lee
Abstract:
PCCI engines can reduce NOx and PM emissions simultaneously without sacrificing thermal efficiency, but a low combustion temperature resulting from early fuel injection, and ignition occurring prior to TDC, can cause higher THC and CO emissions and fuel consumption. In conclusion, it was found that the PCCI combustion achieved by the 2-stage injection strategy with optimized calibration factors (e.g. EGR rate, injection pressure, swirl ratio, intake pressure, injection timing) can reduce NOx and PM emissions simultaneously. This research works are expected to provide valuable information conducive to a development of an innovative combustion engine that can fulfill upcoming stringent emission standards.Keywords: Atkinson cycle, Diesel Engine, LIVC (Late intakevalve closing), PCCI (premixed charge compression ignition)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25986006 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish
Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb
Abstract:
This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.
Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15616005 Feasibility of Integrating Heating Valve Drivers with KNX-standard for Performing Dynamic Hydraulic Balance in Domestic Buildings
Authors: Tobias Teich, Danny Szendrei, Markus Schrader, Franziska Jahn, Susan Franke
Abstract:
The increasing demand for sufficient and clean energy forces industrial and service companies to align their strategies towards efficient consumption. This trend refers also to the residential building sector. There, large amounts of energy consumption are caused by house and facility heating. Many of the operated hot water heating systems lack hydraulic balanced working conditions for heat distribution and –transmission and lead to inefficient heating. Through hydraulic balancing of heating systems, significant energy savings for primary and secondary energy can be achieved. This paper addresses the use of KNX-technology (Smart Buildings) in residential buildings to ensure a dynamic adaption of hydraulic system's performance, in order to increase the heating system's efficiency. In this paper, the procedure of heating system segmentation into hydraulically independent units (meshes) is presented. Within these meshes, the heating valve are addressed and controlled by a central facility server. Feasibility criteria towards such drivers will be named. The dynamic hydraulic balance is achieved by positioning these valves according to heating loads, that are generated from the temperature settings in the corresponding rooms. The energetic advantages of single room heating control procedures, based on the application FacilityManager, is presented.Keywords: building automation, dynamic hydraulic balance, energy savings, VPN-networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18976004 Study of Natural Patterns on Digital Image Correlation Using Simulation Method
Authors: Gang Li, Ghulam Mubashar Hassan, Arcady Dyskin, Cara MacNish
Abstract:
Digital image correlation (DIC) is a contactless fullfield displacement and strain reconstruction technique commonly used in the field of experimental mechanics. Comparing with physical measuring devices, such as strain gauges, which only provide very restricted coverage and are expensive to deploy widely, the DIC technique provides the result with full-field coverage and relative high accuracy using an inexpensive and simple experimental setup. It is very important to study the natural patterns effect on the DIC technique because the preparation of the artificial patterns is time consuming and hectic process. The objective of this research is to study the effect of using images having natural pattern on the performance of DIC. A systematical simulation method is used to build simulated deformed images used in DIC. A parameter (subset size) used in DIC can have an effect on the processing and accuracy of DIC and even cause DIC to failure. Regarding to the picture parameters (correlation coefficient), the higher similarity of two subset can lead the DIC process to fail and make the result more inaccurate. The pictures with good and bad quality for DIC methods have been presented and more importantly, it is a systematic way to evaluate the quality of the picture with natural patterns before they install the measurement devices.
Keywords: Digital image correlation (DIC), Deformation simulation, Natural pattern, Subset size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27996003 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet
Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa
Abstract:
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.Keywords: CFA, carbon, methyl violet, adsorption capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21706002 The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063
Authors: Rabinder Singh Bharj, Sandeep Kumar
Abstract:
This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer.
Keywords: Absorbed energy, bullet proof glass, laminated glass, safety glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50736001 Preparation of ATO Conductive Particles with Narrow Size Distribution
Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu
Abstract:
Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887