Search results for: Buoyant flows
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 377

Search results for: Buoyant flows

167 Self-Excited Vibration in Hydraulic Ball Check Valve

Authors: L. Grinis, V. Haslavsky, U. Tzadka

Abstract:

This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow past a sphere in a hydraulic check valve. The phenomenon of the rotation of the ball around the axis of the device through which liquid flows has been found. That is, due to the rotation of the sphere in the check valve vibration is caused. We observe the rotation of the sphere around the longitudinal axis of the check valve. This rotation is induced by a vortex shedding from the sphere. We will discuss computational simulation and experimental investigations of this strong sphere rotation. The frequency of the sphere vibration and interaction with the check valve wall has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. This study demonstrates the possibility to control the vibrations in a hydraulic system and proves to be very effective suppression of the self-excited vibration.

Keywords: Check-valve, vibration, vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
166 A Lifetime-Guaranteed Routing Scheme in Wireless Sensor Networks

Authors: Jae Keun Park, Sung Je Hong, Kyong Hoon Kim, Tae Heum Kang, Wan Yeon Lee

Abstract:

In this paper, we propose a routing scheme that guarantees the residual lifetime of wireless sensor networks where each sensor node operates with a limited budget of battery energy. The scheme maximizes the communications QoS while sustaining the residual battery lifetime of the network for a specified duration. Communication paths of wireless nodes are translated into a directed acyclic graph(DAG) and the maximum-flow algorithm is applied to the graph. The found maximum flow are assigned to sender nodes, so as to maximize their communication QoS. Based on assigned flows, the scheme determines the routing path and the transmission rate of data packet so that any sensor node on the path would not exhaust its battery energy before a specified duration.

Keywords: Sensor network, battery, residual lifetime, routingscheme, QoS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
165 Does Corporate Governance or Transparency Affect Foreign Direct Investment?

Authors: Haksoon Kim

Abstract:

The paper investigates the relationship between the foreign direct investment (FDI) and the corporate governance or transparency by investigating the country-level FDI flows, FDI inward performance, corporate governance and transparency variables. From the regression analysis with Newey-West estimator of 28 country panel data from 1990- 2002, we find strong positive relationships between corporate governance or transparency level of hosting countries and FDI inward performance within hosting countries. A strong positive relationship is found between anti-director rights level or number of analysts of hosting countries and FDI inward performance within hosting countries. Also, we find a positive relationship between the number of analysts of hosting countries and FDI inflows. The empirical results are consistent with stock market liberalizations and corporate governance explanations of reasons for FDI.

Keywords: corporate governance, corporate transparency, FDIflows, FDI inward performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
164 Bi-Criteria Latency Optimization of Intra-and Inter-Autonomous System Traffic Engineering

Authors: K. Vidya, V.Rhymend Uthariaraj

Abstract:

Traffic Engineering (TE) is the process of controlling how traffic flows through a network in order to facilitate efficient and reliable network operations while simultaneously optimizing network resource utilization and traffic performance. TE improves the management of data traffic within a network and provides the better utilization of network resources. Many research works considers intra and inter Traffic Engineering separately. But in reality one influences the other. Hence the effective network performances of both inter and intra Autonomous Systems (AS) are not optimized properly. To achieve a better Joint Optimization of both Intra and Inter AS TE, we propose a joint Optimization technique by considering intra-AS features during inter – AS TE and vice versa. This work considers the important criterion say latency within an AS and between ASes. and proposes a Bi-Criteria Latency optimization model. Hence an overall network performance can be improved by considering this jointoptimization technique in terms of Latency.

Keywords: Inter-Domain Routing , Measurement, OptimizationPerformance, Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
163 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
162 Modular Data and Calculation Framework for a Technology-Based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: Industry 4.0, lean management 4.0, value stream management 4.0, value stream mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
161 Transmission Pricing based on Voltage Angle Decomposition

Authors: M. Oloomi-Buygi, M. Reza Salehizadeh

Abstract:

In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.

Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
160 Energy Recovery from Swell with a Height Inferior to 1.5 m

Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland

Abstract:

Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.

Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
159 Three-dimensional Simulation of Flow Pattern at the Lateral Intake in Straight Path, using Finite-Volume Method

Authors: R.Goudarzizadeh, N.Hedayat, S.H.Mousavi Jahromi

Abstract:

Channel junctions can be analyzed in two ways of division (lateral intake) and combined flows (confluence). The present paper investigates 3D flow pattern at lateral intake using Navier-Stokes equation and κ -ε (RNG) turbulent model. The equations are solved by Finite-Volume Method (FVM) and results are compared with the experimental data of (Barkdoll, B.D., 1997) to test the validity of the findings. Comparison of the results with the experimental data indicated a close proximity between the two sets of data which suggest a very close simulation. Results further indicated an inverse relation between the effects of discharge ratio ( r Q ) on the length and width of the separation zone. In other words, as the discharge ration increases, the length and width of separation zone decreases.

Keywords: 900 junction, flow division, turbulent flow, numerical modeling, flow separation zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
158 The Aspect of the Human Bias in Decision Making within Quality Management Systems & LEAN Theory

Authors: Adriana Ávila Zúñiga Nordfjeld

Abstract:

This paper provides a literature review to document the state of the art with respect to handling “human bias” in decision making within the established quality management systems (QMS) and LEAN theory, in the context of shipbuilding. Previous research shows that in shipbuilding there is a huge deviation from the planned man-hours under the project management to the actual man-hours used because of errors in planning and reworks caused by human bias in the information flows, among others. This reduces the efficiency, and increases operational costs. Thus, the research question is how QMS and LEAN handle biases. The findings show the gap in studying the integration of methods to handle human bias in decision making into QMS and lean, not only within shipbuilding, but in general. Theoretical and practical implications are discussed for researchers and practitioners in the areas of decision making, QMS and LEAN, and future research is suggested.

Keywords: Human bias, decision making, LEAN Shipbuilding, quality management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
157 The Application of HLLC Numerical Solver to the Reduced Multiphase Model

Authors: Fatma Ghangir, Andrzej F. Nowakowski, Franck C. G. A. Nicolleau, Thomas M. Michelitsch

Abstract:

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Keywords: Multiphase flow, gas-liquid flow, Godunov schems, Riemann solvers, HLL scheme, HLLC scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
156 A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems

Authors: R. Srinivasa Rao, S. V. L. Narasimham

Abstract:

This paper presents a novel approach for optimal reconfiguration of radial distribution systems. Optimal reconfiguration involves the selection of the best set of branches to be opened, one each from each loop, such that the resulting radial distribution system gets the desired performance. In this paper an algorithm is proposed based on simple heuristic rules and identified an effective switch status configuration of distribution system for the minimum loss reduction. This proposed algorithm consists of two parts; one is to determine the best switching combinations in all loops with minimum computational effort and the other is simple optimum power loss calculation of the best switching combination found in part one by load flows. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 33-bus system. The results show that the performance of the proposed method is better than that of the other methods.

Keywords: Distribution system, network reconfiguration, powerloss reduction, radial network, heuristic technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
155 Geometric Representation of Modified Forms of Seven Important Failure Criteria

Authors: Ranajay Bhowmick

Abstract:

Elastoplastic analysis of a structural system involves defining failure/yield criterion, flow rules and hardening rules. The failure/yield criterion defines the limit beyond which the material flows plastically and hardens/softens or remains perfectly plastic before ultimate collapse. The failure/yield criterion is represented geometrically in three/two dimensional Haigh-Westergaard stress-space to facilitate a better understanding of the behavior of the material. In the present study geometric representations in three and two-dimensional stress-space of a few important failure/yield criterion are presented. The criteria presented are the modified forms obtained due to the conditional solutions of the equation of stress invariants. A comparison of the failure/yield surfaces is also presented here to obtain the effectiveness of each of them and it has been found that for identical conditions the Rankine’s criterion gives the largest values of limiting stresses.

Keywords: Deviatoric plane, failure criteria, geometric representation, hydrostatic axis, modified form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
154 Simulation of Sloshing behavior using Moving Grid and Body Force Methods

Authors: Tadashi Watanabe

Abstract:

The flow field and the motion of the free surface in an oscillating container are simulated numerically to assess the numerical approach for studying two-phase flows under oscillating conditions. Two numerical methods are compared: one is to model the oscillating container directly using the moving grid of the ALE method, and the other is to simulate the effect of container motion using the oscillating body force acting on the fluid in the stationary container. The two-phase flow field in the container is simulated using the level set method in both cases. It is found that the calculated results by the body force method coinsides with those by the moving grid method and the sloshing behavior is predicted well by both the methods. Theoretical back ground and limitation of the body force method are discussed, and the effects of oscillation amplitude and frequency are shown.

Keywords: Two-phase flow, simulation, oscillation, moving grid, body force

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
153 Influence of the Entropic Parameter on the Flow Geometry and Morphology

Authors: D. Mirauda, M. Greco, A. Volpe Plantamura

Abstract:

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Keywords: Froude number, entropic parameter, roughness, water discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
152 Predicting the Life Cycle of Complex Technical Systems (CTS)

Authors: Khalil A. Yaghi, Samer Barakat

Abstract:

Complex systems are composed of several plain interacting independent entities. Interaction between these entities creates a unified behavior at the global level that cannot be predicted by examining the behavior of any single individual component of the system. In this paper we consider a welded frame of an automobile trailer as a real example of Complex Technical Systems, The purpose of this paper is to introduce a Statistical method for predicting the life cycle of complex technical systems. To organize gathering of primary data for modeling the life cycle of complex technical systems an “Automobile Trailer Frame" were used as a prototype in this research. The prototype represents a welded structure of several pieces. Both information flows underwent a computerized analysis and classification for the acquisition of final results to reach final recommendations for improving the trailers structure and their operational conditions.

Keywords: Complex Technical System (CTS), AutomobileTrailer Frame, Automobile Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
151 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
150 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
149 Numerical Analysis of Air Flow and Conjugated Heat Transfer in Internally Grooved Parallel- Plate Channels

Authors: Hossein Shokouhmand , Koohyar Vahidkhah, Mohammad A. Esmaeili

Abstract:

A numerical investigation of surface heat transfer characteristics of turbulent air flows in different parallel plate grooved channels is performed using CFD code. The results are obtained for Reynolds number ranging from 10,000 to 30,000 and for arc-shaped and rectangular grooved channels. The influence of different geometric parameters of dimples as well as the number of them and the geometric and thermophysical properties of channel walls are studied. It is found that there exists an optimum value for depth of dimples in which the largest wall heat flux can be achieved. Also, the results show a critical value for the ratio of wall thermal conductivity to the one of fluid in which the dependence of wall heat flux to this ratio almost vanishes. In most cases examined, heat transfer enhancement is larger for arc-shaped grooved channels than rectangular ones.

Keywords: dimple, heat transfer enhancement, Numerical, optimum value, turbulent air flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
148 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks

Authors: Sunmyeng Kim

Abstract:

IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.

Keywords: Cooperative communications, MAC protocol, Relay node, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
147 A Training Model for Successful Implementation of Enterprise Resource Planning

Authors: Volker Heierhoff, Aurilla Aurelie Bechina Arntzen, Gerrit Muller

Abstract:

It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.

Keywords: Business User Training, Enterprise resource planning system, Global consulting company, Role and responsibilities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
146 Analysis of Boiling in Rectangular Micro Channel Heat Sink

Authors: Ahmed Jassim Shkarah, Mohd Yusoff Bin Sulaiman, Md Razali bin Hj Ayob

Abstract:

A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing Tow-phase flows. The sole purpose for analyzing two phase flow heat transfer in rectangular micro channel is to pin point what are the different factors affecting this phenomenon. Different methods and techniques have been undertaken to analyze the equations arising constituting the flow of heat from gas phase to liquid phase and vice versa.Different models of micro channels have been identified and analyzed. How the geometry of micro channels affects their activity i.e. of circular and non-circular geometry has also been reviewed. To the study the results average Nusselt no plotted against the Reynolds no has been taken into consideration to study average heat exchange in micro channels against applied heat flux. High heat fluxes up to 140 W/cm2 were applied to investigate micro-channel thermal characteristics.

Keywords: Tow Phase flow, Micro channel, VOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
145 A Study of Flow and Sedimentation at the Basins of Khoozestan Province Rivers: A Case Study of Boneh Basht Pumping Station

Authors: Emad Hazbkhah. Abdolreza zahiri, Hossein ghorbanizade kharazi

Abstract:

The present paper is a case study about exploitation of Kheir Abad river (Khoozestan, Iran) water resources and the problems caused by river sediments around the pumping stations. The weak points and strong points of Boneh Basht pumping station have been studied by experienced experts, work teams, and consulting engineers and technical and executive solutions have been suggested. Therefore, the suggestions of this article are based on the performed studies and are proposed in order to evaluate the logical solutions. Rather complicated processes resulting from the interaction of water flows and sediments observed at Boneh Basht pumping station occur at other pumping stations in almost the same way. Therefore, Boneh Basht pumping station can be selected as a sample (pilot) and up-to-date theories and experiences can be applied to this station and the results can be offered to other stations.

Keywords: Boneh Basht , Iran , Pumping Station, Sedimentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
144 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
143 CFD Simulation to Study the Effect of Ambient Temperature on the Ventilation in a Metro Tunnel

Authors: Yousif Naif Almutai, Yajue Wu

Abstract:

In larger cities worldwide, mass transportation systems, including underground systems, have grown to account for the majority of travel in those settings. Underground networks are vulnerable to fires, however, endangering travellers’ safety, with various examples of fire outbreaks in this setting. This study aims to increase knowledge of the impacts of extreme climatic conditions on fires, including the role of the high ambient temperatures experienced in Middle Eastern countries and specifically in Saudi Arabia. This is an element that is not always included when assessments of fire safety are made (considering visibility, temperatures, and flows of smoke). This paper focuses on a tunnel within Riyadh’s underground system as a case study and includes simulations based on computational fluid dynamics using ANSYS Fluent, which investigates the impact of various ventilation systems while identifying smoke density, speed, pressure and temperatures within this tunnel.

Keywords: Fire, subway tunnel, CFD, ventilation, smoke concentration, harsh weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
142 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
141 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: Hybrid energy system, optimum sizing, power management, TLBO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
140 Computational and Experimental Investigation of Supersonic Flow and their Controls

Authors: Vasana M. Don, Eldad J. Avital, Fariborz Motallebi

Abstract:

Supersonic open and closed cavity flows are investigated experimentally and computationally. Free stream Mach number of two is set. Schlieren imaging is used to visualise the flow behaviour showing stark differences between open and closed. Computational Fluid Dynamics (CFD) is used to simulate open cavity of flow with aspect ratio of 4. A rear wall treatment is implemented in order to pursue a simple passive control approach. Good qualitative agreement is achieved between the experimental flow visualisation and the CFD in terms of the expansion-shock waves system. The cavity oscillations are shown to be dominated by the first and third Rossister modes combining to high fluctuations of non-linear nature above the cavity rear edge. A simple rear wall treatment in terms of a hole shows mixed effect on the flow oscillations, RMS contours, and time history density fluctuations are given and analysed.

Keywords: Supersonic, Schlieren, open-cavity, flow simulation, passive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
139 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid

Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari

Abstract:

Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.

Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
138 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: Aerodynamics compressible flow, gas dynamics, hydraulics, shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949