Search results for: Al composition-graded AlGaN layer
799 Modeling and Prediction of Zinc Extraction Efficiency from Concentrate by Operating Condition and Using Artificial Neural Networks
Authors: S. Mousavian, D. Ashouri, F. Mousavian, V. Nikkhah Rashidabad, N. Ghazinia
Abstract:
PH, temperature and time of extraction of each stage, agitation speed and delay time between stages effect on efficiency of zinc extraction from concentrate. In this research, efficiency of zinc extraction was predicted as a function of mentioned variable by artificial neural networks (ANN). ANN with different layer was employed and the result show that the networks with 8 neurons in hidden layer has good agreement with experimental data.
Keywords: Zinc extraction, Efficiency, Neural networks, Operating condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589798 Backward Erosion Piping through Vertically Layered Sands
Authors: K. Vandenboer, L. Dolphen, A. Bezuijen
Abstract:
Backward erosion piping is an important failure mechanism for water-retaining structures, a phenomenon that results in the formation of shallow pipes at the interface of a sandy or silty foundation and a cohesive cover layer. This paper studies the effect of two soil types on backward erosion piping; both in case of a homogeneous sand layer, and in a vertically layered sand sample, where the pipe is forced to subsequently grow through the different layers. Two configurations with vertical sand layers are tested; they both result in wider pipes and higher critical gradients, thereby making this an interesting topic in research on measures to prevent backward erosion piping failures.Keywords: Backward erosion piping, embankments, physical modelling, sand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045797 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.
Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434796 Characterization of Silica Nanoparticles in Interaction with Escherichia coli Bacteria
Authors: Ibtissem Gammoudi, Ndeye Rokhaya Faye, Fabien Moroté, Daniel Moynet, Christine Grauby-Heywang, Touria Cohen-Bouhacina
Abstract:
The objective of the present investigation was to evaluate the morphology of Escherchia coli bacteria in interaction with SiO2 nanoparticles. This study was made by atomic force microscopy and quartz crystal microbalance using SiO2 nanoparticles with 10nm, 50nm and 100nm diameter and bacteria immobilized on polyelectrolyte multilayer films obtained by spin coating or by “layer by layer” (LbL) method.
Keywords: Atomic Force Microscopy, Escherichia coli, Quartz Crystal Microbalance, polyelectrolyte, silica nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681795 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load
Authors: K. Karuppasamy
Abstract:
In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456794 The High Temperature Damage of DV – 2 Turbine Blade Made from Ni – Base Superalloy
Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik
Abstract:
High pressure turbine (HPT) blades of DV – 2 jet engines are made from Ni – based superalloy. This alloy was originally manufactured in the Soviet Union and referred as ŽS6K. For improving alloy’s high temperature resistance are blades coated with Al – Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An overcrossing working temperature range causes degradation of the protective coating as well as base material which microstructure is formed by the gamma matrix and strengthening phase gamma prime (forming small particles in the microstructure). Diffusion processes inside the material during exposition of the material to high temperatures causes mainly coarsening of the gamma prime particles, thus decreasing its strengthening effect. Degradation of the Al – Si coating caused its thickness growth. All the microstructure changes and coating layer thickness growth results in decreasing of the turbine blade operation lifetime.Keywords: Alitize coating layer, gamma prime phase, high temperature degradation, Ni – base superalloy ŽS6K, turbine blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185793 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils
Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade
Abstract:
Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.
Keywords: Bearing capacity, reinforcement, geogrid, plate load test, layered soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844792 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520791 Centralized Resource Management for Network Infrastructure Including Ip Telephony by Integrating a Mediator Between the Heterogeneous Data Sources
Authors: Mohammed Fethi Khalfi, Malika Kandouci
Abstract:
Over the past decade, mobile has experienced a revolution that will ultimately change the way we communicate.All these technologies have a common denominator exploitation of computer information systems, but their operation can be tedious because of problems with heterogeneous data sources.To overcome the problems of heterogeneous data sources, we propose to use a technique of adding an extra layer interfacing applications of management or supervision at the different data sources.This layer will be materialized by the implementation of a mediator between different host applications and information systems frequently used hierarchical and relational manner such that the heterogeneity is completely transparent to the VoIP platform.Keywords: TOIP, Data Integration, Mediation, informationcomputer system, heterogeneous data sources
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331790 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.
Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231789 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research
Authors: N. Patten, T. M. Young, P. Griffin
Abstract:
Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772788 Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System
Authors: M. Al-Saedi, A. Chegenizadeh, H. Nikraz
Abstract:
Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.
Keywords: Rock base course, layered structure, glass, resilient modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625787 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field
Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand
Abstract:
The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170786 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination
Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad
Abstract:
Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573785 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518784 Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region
Authors: Mohsen Hayati, Yazdan Shirvany
Abstract:
In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.Keywords: Artificial neural networks, Forecasting, Multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776783 Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation
Authors: Norihan Md Arifin, Norfifah Bachok
Abstract:
The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.Keywords: Linear stability, Marangoni convection, Internal Heatgeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474782 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study
Authors: Jurij Tasinkiewicz
Abstract:
The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.
Keywords: Beamforming, transducer array, BIS-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607781 Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET
Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru
Abstract:
Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Effective Electric Field and Effective Mobility Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909780 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design
Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai
Abstract:
This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.Keywords: PDMS, Check valve, Micro pump, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026779 A Critics Study of Neural Networks Applied to ion-Exchange Process
Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle
Abstract:
This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.Keywords: Copper, ion-exchange process, neural networks, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631778 The Effect of Bath Composition for Hot-Dip Aluminizing of AISI 4140 Steel
Authors: Aptullah Karakaş, Murat Baydoğan
Abstract:
In the HDA process, Al or Al-Si molten baths are mostly used. However, in this study, three different Al alloys such as Al4043 (Al-Mg), Al5356 (Al-Si) and Al7020 (Al-Zn) were used as the molten bath in order to see their effects on morphological and mechanical properties of the resulting aluminide layers. AISI 4140 low alloyed steel was used as the substrate. Parameters of the HDA process were bath composition, bath temperature, and dipping time. These parameters were considered within a Taguchi L9 orthogonal array. After the HDA process and subsequent diffusion annealing, coating thickness measurement, microstructural analysis and hardness measurement of the aluminide layers were conducted. The optimum process parameters were evaluated according to coating morphology such as cracks, Kirkendall porosity and hardness of the coatings. According to the results, smooth and clean aluminide layer with less Kirkendall porosity and cracks were observed on the sample, which was aluminized in the molten Al7020 bath at 700 C for 10 minutes, and subsequently diffusion annealed at 750 C. Hardness of the aluminide layer was in between 1100-1300 hardness of Vickers (HV) and the coating thickness was approximately 400 µm. The results were promising such that a hard and thick aluminide layer with less Kirkendall porosity and cracks could be formed. It is therefore, concluded that Al7020 bath may be used in the HDA process of AISI 4140 steel substrate.
Keywords: Aluminum alloys, coating, hot-dip aluminizing, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89777 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM
Authors: A. Megalingam, M.M.Mayuram
Abstract:
Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735776 Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation
Authors: L. Torchane
Abstract:
The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.
Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181775 Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm for Multi Hop Mobile Ad Hoc Networks
Authors: Y. Harold Robinson, E. Golden Julie, S. Balaji
Abstract:
The scheduling based routing scheme is presented in this paper to avoid link failure. The main objective of this system is to introduce a cross-layer protocol framework that integrates routing with priority-based traffic management and distributed transmission scheduling. The reservation scheme is based on ID. The presented scheme guarantees that bandwidth reserved time slot is used by another packet in which end-to-end reservation is achieved. The Bandwidth and Delay Aware Routing Protocol with Scheduling Algorithm is presented to allocate channels efficiently. The experimental results show that the presented schemes performed well in various parameters compared to existing methods.Keywords: Integrated routing, scheduling, MAC layer, IEEE 802.11.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185774 Numbers and Biomass of Bacteria and Fungi Obtained by the Direct Microscopic Count Method
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
The soil ecology of the organic and mineral soil layers of laurel-leaved and Cryptomeria japonica forest in the Kasuga-yama Hill Primeval Forest (Nara, Japan) was assessed. The number of bacteria obtained by the dilution plate count method was less than 0.05% of those counted by the direct microscopic count. We therefore found that forest soil contains large numbers of non-culturable bacteria compared with agricultural soils. The numbers of bacteria and fungi obtained by both the dilution plate count and the direct microscopic count were larger in the deeper horizons (F and H) of the organic layer than in the mineral soil layer. This suggests that active microbial metabolism takes place in the organic layer. The numbers of bacteria and the length of fungal hyphae obtained by the direct count method were greater in the H horizon than in the F horizon. The direct microscopic count revealed numerous non-culturable bacteria and fungi in the soil. The ratio of fungal to bacterial biomass was lower in the laurel-leaved forest soil. The fungal biomass was therefore relatively low in the laurel-leaved forest soil due to differences in forest vegetation.Keywords: Bacterial number, Dilution plate count, Direct microscopic count, Forest soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770773 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow
Authors: Vai Kuong Sin
Abstract:
Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.
Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533772 Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate
Authors: Partha P. Gopmandal, S. Bhattacharyya
Abstract:
We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.
Keywords: Electrophoresis, Advective flow, Polarization effect, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807771 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads
Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad
Abstract:
Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.Keywords: Reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593770 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture
Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain
Abstract:
Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.
Keywords: Oil-spill, graphene, oil-water separation, nanocomposite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843