Search results for: Nonparametric models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2556

Search results for: Nonparametric models

246 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 551
245 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99
244 Associated Map and Inter-Purchase Time Model for Multiple-Category Products

Authors: Ching-I Chen

Abstract:

The continued rise of e-commerce is the main driver of the rapid growth of global online purchase. Consumers can nearly buy everything they want at one occasion through online shopping. The purchase behavior models which focus on single product category are insufficient to describe online shopping behavior. Therefore, analysis of multi-category purchase gets more and more popular. For example, market basket analysis explores customers’ buying tendency of the association between product categories. The information derived from market basket analysis facilitates to make cross-selling strategies and product recommendation system.

To detect the association between different product categories, we use the market basket analysis with the multidimensional scaling technique to build an associated map which describes how likely multiple product categories are bought at the same time. Besides, we also build an inter-purchase time model for associated products to describe how likely a product will be bought after its associated product is bought. We classify inter-purchase time behaviors of multi-category products into nine types, and use a mixture regression model to integrate those behaviors under our assumptions of purchase sequences. Our sample data is from comScore which provides a panelist-label database that captures detailed browsing and buying behavior of internet users across the United States. Finding the inter-purchase time from books to movie is shorter than the inter-purchase time from movies to books. According to the model analysis and empirical results, this research finally proposes the applications and recommendations in the management.

Keywords: Multiple-category purchase behavior, inter-purchase time, market basket analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
243 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
242 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door

Authors: Emin Z. Mahmud

Abstract:

This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.

Keywords: Behavior of masonry structures, Eurocode, fundamental frequency, masonry, shaking table test, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570
241 Urban Air Pollution – Trend and Forecasting of Major Pollutants by Timeseries Analysis

Authors: A.L. Seetharam, B.L. Udaya Simha

Abstract:

The Bangalore City is facing the acute problem of pollution in the atmosphere due to the heavy increase in the traffic and developmental activities in recent years. The present study is an attempt in the direction to assess trend of the ambient air quality status of three stations, viz., AMCO Batteries Factory, Mysore Road, GRAPHITE INDIA FACTORY, KHB Industrial Area, Whitefield and Ananda Rao Circle, Gandhinagar with respect to some of the major criteria pollutants such as Total Suspended particular matter (SPM), Oxides of nitrogen (NOx), and Oxides of sulphur (SO2). The sites are representative of various kinds of growths viz., commercial, residential and industrial, prevailing in Bangalore, which are contributing to air pollution. The concentration of Sulphur Dioxide (SO2) at all locations showed a falling trend due to use of refined petrol and diesel in the recent years. The concentration of Oxides of nitrogen (NOx) showed an increasing trend but was within the permissible limits. The concentration of the Suspended particular matter (SPM) showed the mixed trend. The correlation between model and observed values is found to vary from 0.4 to 0.7 for SO2, 0.45 to 0.65 for NOx and 0.4 to 0.6 for SPM. About 80% of data is observed to fall within the error band of ±50%. Forecast test for the best fit models showed the same trend as actual values in most of the cases. However, the deviation observed in few cases could be attributed to change in quality of petro products, increase in the volume of traffic, introduction of LPG as fuel in many types of automobiles, poor condition of roads, prevailing meteorological conditions, etc.

Keywords: Bangalore, urban air pollution, time series analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
240 Islamic Education System: Implementation of Curriculum Kuttab Al-Fatih Semarang

Authors: Basyir Yaman, Fades Br. Gultom

Abstract:

The picture and pattern of Islamic education in the Prophet's period in Mecca and Medina is the history of the past that we need to bring back. The Basic Education Institute called Kuttab. Kuttab or Maktab comes from the word kataba which means to write. The popular Kuttab in the Prophet’s period aims to resolve the illiteracy in the Arab community. In Indonesia, this Institution has 25 branches; one of them is located in Semarang (i.e. Kuttab Al-Fatih). Kuttab Al-Fatih as a non-formal institution of Islamic education is reserved for children aged 5-12 years. The independently designed curriculum is a distinctive feature that distinguishes between Kuttab Al-Fatih curriculum and the formal institutional curriculum in Indonesia. The curriculum includes the faith and the Qur’an. Kuttab Al-Fatih has been licensed as a Community Activity Learning Center under the direct supervision and guidance of the National Education Department. Here, we focus to describe the implementation of curriculum Kuttab Al-Fatih Semarang (i.e. faith and al-Qur’an). After that, we determine the relevance between the implementation of the Kuttab Al-Fatih education system with the formal education system in Indonesia. This research uses literature review and field research qualitative methods. We obtained the data from the head of Kuttab Al-Fatih Semarang, vice curriculum, faith coordinator, al-Qur’an coordinator, as well as the guardians of learners and the learners. The result of this research is the relevance of education system in Kuttab Al-Fatih Semarang about education system in Indonesia. Kuttab Al-Fatih Semarang emphasizes character building through a curriculum designed in such a way and combines thematic learning models in modules.

Keywords: Islamic education system, implementation of curriculum, Kuttab Al-Fatih semarang, formal education system in Indonesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
239 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: D. Koren, V. Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab.The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: Extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
238 Impact Assessment using Path Models of Microentrepreneurs developed by a Business Corporation in India

Authors: M. J. Xavier, J. Raja, S. Usha Nandhini

Abstract:

For scores of years now, several microfinance organizations, non governmental organizations and other welfare organizations have, with a view to aiding the progress of communities rooted in poverty have been focusing on creating microentrepreneurs, besides taking several other measures. In recent times, business corporations have joined forces to combat poverty by taking up microenterprise development. Hindustan Unilever Limited (HUL), the Indian subsidiary of Unilever Limited exemplifies this through its Project Shakti. The company through the Project creates rural women entrepreneurs by making them direct to home sales distributors of its products in villages that have thus far been ignored by multinational corporations. The members participating in Project Shakti are largely self help group members. The paper focuses on assessing the impact made by the company on the members engaged in Project Shakti. The analysis involves use of quantitative methods to study the effect of Project Shakti on those self help group members engaged in Project Shakti and those not engaged with Project Shakti. Path analysis has been used to study the impact made on those members engaged in Project Shakti. Significant differences were observed on fronts of entrepreneurial development, economic empowerment and social empowerment between members associated with Project Shakti and those not associated with Project Shakti. Path analysis demonstrated that involvement in Project Shakti led to entrepreneurial development resulting in economic empowerment that in turn led to social empowerment and that these three elements independently induced a feeling of privilege in the women for being associated with the Project.

Keywords: Entrepreneurship development, economicempowerment, impact assessment, microentrepreneurs, pathanalysis, social empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
237 The Impact of ISO 9001 Certification on Brazilian Firms’ Performance: Insights from Multiple Case Studies

Authors: Matheus Borges Carneiro, Fabiane Letícia Lizarelli, José Carlos de Toledo

Abstract:

The evolution of quality management by companies was strongly enabled by, among others, ISO 9001 certification, which is considered a crucial requirement for several customers. Likewise, performance measurement provides useful insights for companies to identify the reflection of their decision-making process on their improvement. One of the most used performance measurement models is the balanced scorecard (BSC), which uses four perspectives to address a firm’s performance: financial, internal process, customer satisfaction, and learning and growth. Since ISO 9001 certified firms are likely to measure their performance through BSC approach, it is important to verify whether the certificate influences the firm performance or not. Therefore, this paper aims to verify the impact of ISO 9001:2015 on Brazilian firms’ performance based on the BSC perspective. Hence, nine certified companies located in the Southeast region of Brazil were studied through a multiple case study approach. Within this study, it was possible to identify the positive impact of ISO 9001 on firms’ overall performance, and four Critical Success Factors (CSFs) were identified as relevant on the linkage among ISO 9001 and firms’ performance: employee involvement, top management, process management, and customer focus. Due to the COVID-19 pandemic, the number of interviews was limited to the quality manager specialist, and the sample was limited since several companies were closed during the period of the study. This study presents an in-depth analysis of how the relationship between ISO 9001 certification and firms’ performance in a developing country is.

Keywords: Balanced scorecard, Brazilian firms’ performance, critical success factors, ISO 9001 certification, performance measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
236 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
235 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, Josiah Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: Brewery wastewater, methane generation model, environment, anaerobic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4213
234 A Hybrid Ontology Based Approach for Ranking Documents

Authors: Sarah Motiee, Azadeh Nematzadeh, Mehrnoush Shamsfard

Abstract:

Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques to extract phrases from documents and the query and doing stemming on words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done flexible and in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.

Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
233 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
232 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
231 Very High Speed Data Driven Dynamic NAND Gate at 22nm High K Metal Gate Strained Silicon Technology Node

Authors: Shobha Sharma, Amita Dev

Abstract:

Data driven dynamic logic is the high speed dynamic circuit with low area. The clock of the dynamic circuit is removed and data drives the circuit instead of clock for precharging purpose. This data driven dynamic nand gate is given static forward substrate biasing of Vsupply/2 as well as the substrate bias is connected to the input data, resulting in dynamic substrate bias. The dynamic substrate bias gives the shortest propagation delay with a penalty on the power dissipation. Propagation delay is reduced by 77.8% compared to the normal reverse substrate bias Data driven dynamic nand. Also dynamic substrate biased D3nand’s propagation delay is reduced by 31.26% compared to data driven dynamic nand gate with static forward substrate biasing of Vdd/2. This data driven dynamic nand gate with dynamic body biasing gives us the highest speed with no area penalty and finds its applications where power penalty is acceptable. Also combination of Dynamic and static Forward body bias can be used with reduced propagation delay compared to static forward biased circuit and with comparable increase in an average power. The simulations were done on hspice simulator with 22nm High-k metal gate strained Si technology HP models of Arizona State University, USA.

Keywords: Data driven nand gate, dynamic substrate biasing, nand gate, static substrate biasing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
230 Stresses Distribution in Spot, Bonded, and Weld- Bonded Joints during the Process of Axial Load

Authors: Essam A. Al-Bahkali, Mahir H. Es-saheb, Jonny Herwan

Abstract:

In this study the elastic-plastic stress distribution in weld-bonded joint, fabricated from austenitic stainless steel (AISI 304) sheet of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading is investigated. This is needed to improve design procedures and welding codes, and saving efforts in the cumbersome experiments and analysis. Therefore, a complete 3-D finite element modelling and analysis of spot welded, bonded and weld-bonded joints under axial loading conditions is carried out. A comprehensive systematic experimental program is conducted to determine many properties and quantities, of the base metals and the adhesive, needed for FE modelling, such like the elastic – plastic properties, modulus of elasticity, fracture limit, the nugget and heat affected zones (HAZ) properties, etc. Consequently, the finite element models developed, for each case, are used to evaluate stresses distributions across the entire joint, in both the elastic and plastic regions. The stress distribution curves are obtained, particularly in the elastic regions and found to be consistent and in excellent agreement with the published data. Furthermore, the stresses distributions are obtained in the weld-bonded joint and display the best results with almost uniform smooth distribution compared to spot and bonded cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint of all processes.

Keywords: Spot Welded, Weld-Bonded, Load-Displacement curve, Stress distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
229 Constitutive Equations for Human Saphenous Vein Coronary Artery Bypass Graft

Authors: Hynek Chlup, Lukas Horny, Rudolf Zitny, Svatava Konvickova, Tomas Adamek

Abstract:

Coronary artery bypass grafts (CABG) are widely studied with respect to hemodynamic conditions which play important role in presence of a restenosis. However, papers which concern with constitutive modeling of CABG are lacking in the literature. The purpose of this study is to find a constitutive model for CABG tissue. A sample of the CABG obtained within an autopsy underwent an inflation–extension test. Displacements were recoredered by CCD cameras and subsequently evaluated by digital image correlation. Pressure – radius and axial force – elongation data were used to fit material model. The tissue was modeled as onelayered composite reinforced by two families of helical fibers. The material is assumed to be locally orthotropic, nonlinear, incompressible and hyperelastic. Material parameters are estimated for two strain energy functions (SEF). The first is classical exponential. The second SEF is logarithmic which allows interpretation by means of limiting (finite) strain extensibility. Presented material parameters are estimated by optimization based on radial and axial equilibrium equation in a thick-walled tube. Both material models fit experimental data successfully. The exponential model fits significantly better relationship between axial force and axial strain than logarithmic one.

Keywords: Constitutive model, coronary artery bypass graft, digital image correlation, fiber reinforced composite, inflation test, saphenous vein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
228 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
227 ORank: An Ontology Based System for Ranking Documents

Authors: Mehrnoush Shamsfard, Azadeh Nematzadeh, Sarah Motiee

Abstract:

Increasing growth of information volume in the internet causes an increasing need to develop new (semi)automatic methods for retrieval of documents and ranking them according to their relevance to the user query. In this paper, after a brief review on ranking models, a new ontology based approach for ranking HTML documents is proposed and evaluated in various circumstances. Our approach is a combination of conceptual, statistical and linguistic methods. This combination reserves the precision of ranking without loosing the speed. Our approach exploits natural language processing techniques for extracting phrases and stemming words. Then an ontology based conceptual method will be used to annotate documents and expand the query. To expand a query the spread activation algorithm is improved so that the expansion can be done in various aspects. The annotated documents and the expanded query will be processed to compute the relevance degree exploiting statistical methods. The outstanding features of our approach are (1) combining conceptual, statistical and linguistic features of documents, (2) expanding the query with its related concepts before comparing to documents, (3) extracting and using both words and phrases to compute relevance degree, (4) improving the spread activation algorithm to do the expansion based on weighted combination of different conceptual relationships and (5) allowing variable document vector dimensions. A ranking system called ORank is developed to implement and test the proposed model. The test results will be included at the end of the paper.

Keywords: Document ranking, Ontology, Spread activation algorithm, Annotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
226 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: Construction cost factors, neural networks, roadworks, Zambian Construction Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833
225 A Remote Sensing Approach for Vulnerability and Environmental Change in Apodi Valley Region, Northeast Brazil

Authors: Mukesh Singh Boori, Venerando Eustáquio Amaro

Abstract:

The objective of this study was to improve our understanding of vulnerability and environmental change; it's causes basically show the intensity, its distribution and human-environment effect on the ecosystem in the Apodi Valley Region, This paper is identify, assess and classify vulnerability and environmental change in the Apodi valley region using a combined approach of landscape pattern and ecosystem sensitivity. Models were developed using the following five thematic layers: Geology, geomorphology, soil, vegetation and land use/cover, by means of a Geographical Information Systems (GIS)-based on hydro-geophysical parameters. In spite of the data problems and shortcomings, using ESRI-s ArcGIS 9.3 program, the vulnerability score, to classify, weight and combine a number of 15 separate land cover classes to create a single indicator provides a reliable measure of differences (6 classes) among regions and communities that are exposed to similar ranges of hazards. Indeed, the ongoing and active development of vulnerability concepts and methods have already produced some tools to help overcome common issues, such as acting in a context of high uncertainties, taking into account the dynamics and spatial scale of asocial-ecological system, or gathering viewpoints from different sciences to combine human and impact-based approaches. Based on this assessment, this paper proposes concrete perspectives and possibilities to benefit from existing commonalities in the construction and application of assessment tools.

Keywords: Vulnerability, Land use/cover, Ecosystem, Remotesensing, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2953
224 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network

Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley

Abstract:

A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.

Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
223 Membrane Distillation Process Modeling: Dynamical Approach

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati

Abstract:

This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.

Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
222 A Specification-Based Approach for Retrieval of Reusable Business Component for Software Reuse

Authors: Meng Fanchao, Zhan Dechen, Xu Xiaofei

Abstract:

Software reuse can be considered as the most realistic and promising way to improve software engineering productivity and quality. Automated assistance for software reuse involves the representation, classification, retrieval and adaptation of components. The representation and retrieval of components are important to software reuse in Component-Based on Software Development (CBSD). However, current industrial component models mainly focus on the implement techniques and ignore the semantic information about component, so it is difficult to retrieve the components that satisfy user-s requirements. This paper presents a method of business component retrieval based on specification matching to solve the software reuse of enterprise information system. First, a business component model oriented reuse is proposed. In our model, the business data type is represented as sign data type based on XML, which can express the variable business data type that can describe the variety of business operations. Based on this model, we propose specification match relationships in two levels: business operation level and business component level. In business operation level, we use input business data types, output business data types and the taxonomy of business operations evaluate the similarity between business operations. In the business component level, we propose five specification matches between business components. To retrieval reusable business components, we propose the measure of similarity degrees to calculate the similarities between business components. Finally, a business component retrieval command like SQL is proposed to help user to retrieve approximate business components from component repository.

Keywords: Business component, business operation, business data type, specification matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
221 An In-depth Experimental Study of Wax Deposition in Pipelines

Authors: M. L. Arias, J. D’Adamo, M. N. Novosad, P. A. Raffo, H. P. Burbridge, G. O. Artana

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevent wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of YPF Tecnolgía S.A. (Y-TEC) flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 meters long equipped with a solid detector system, online microscope to visualize crystals, temperature, and pressure sensors along the loop pipe. A baseline test was performed with diesel with no added paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin incorporated to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods.

Keywords: Paraffin deposition, wax, oil pipelines, experimental pipe loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
220 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the elearning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.

Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
219 Customer Involvement in the Development of New Sustainable Products: A Review of the Literature

Authors: Natalia Moreira, Trevor Wood-Harper

Abstract:

The acceptance of sustainable products by the final consumer is still one of the challenges of the industry, which constantly seeks alternative approaches to successfully be accepted in the global market. A large set of methods and approaches have been discussed and analysed throughout the literature. Considering the current need for sustainable development and the current pace of consumption, the need for a combined solution towards the development of new products became clear, forcing researchers in product development to propose alternatives to the previous standard product development models. This paper presents, through a systemic analysis of the literature on product development, eco-design and consumer involvement, a set of alternatives regarding consumer involvement towards the development of sustainable products and how these approaches could help improve the sustainable industry’s establishment in the general market. Still being developed in the course of the author’s PhD, the initial findings of the research show that the understanding of the benefits of sustainable behaviour lead to a more conscious acquisition and eventually to the implementation of sustainable change in the consumer. Thus this paper is the initial approach towards the development of new sustainable products using the fashion industry as an example of practical implementation and acceptance by the consumers. By comparing the existing literature and critically analysing it, this paper concluded that the consumer involvement is strategic to improve the general understanding of sustainability and its features. The use of consumers and communities has been studied since the early 90s in order to exemplify uses and to guarantee a fast comprehension. The analysis done also includes the importance of this approach for the increase of innovation and ground breaking developments, thus requiring further research and practical implementation in order to better understand the implications and limitations of this methodology.

Keywords: Consumer involvement, Products development, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
218 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
217 Modeling Reaction Time in Car-Following Behaviour Based on Human Factors

Authors: Atif Mehmood, Said M. Easa

Abstract:

This paper develops driver reaction-time models for car-following analysis based on human factors. The reaction time was classified as brake-reaction time (BRT) and acceleration/deceleration reaction time (ADRT). The BRT occurs when the lead vehicle is barking and its brake light is on, while the ADRT occurs when the driver reacts to adjust his/her speed using the gas pedal only. The study evaluates the effect of driver characteristics and traffic kinematic conditions on the driver reaction time in a car-following environment. The kinematic conditions introduced urgency and expectancy based on the braking behaviour of the lead vehicle at different speeds and spacing. The kinematic conditions were used for evaluating the BRT and are classified as normal, surprised, and stationary. Data were collected on a driving simulator integrated into a real car and included the BRT and ADRT (as dependent variables) and driver-s age, gender, driving experience, driving intensity (driving hours per week), vehicle speed, and spacing (as independent variables). The results showed that there was a significant difference in the BRT at normal, surprised, and stationary scenarios and supported the hypothesis that both urgency and expectancy had significant effects on BRT. Driver-s age, gender, speed, and spacing were found to be significant variables for the BRT in all scenarios. The results also showed that driver-s age and gender were significant variables for the ADRT. The research presented in this paper is part of a larger project to develop a driversensitive in-vehicle rear-end collision warning system.

Keywords: Brake reaction time, car-following, human factors, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4321