
 

 

 
Abstract—The demand for renewable energy is significantly 

increasing, major investments are being supplied to the wind power 
generation industry as a leading source of clean energy. The wind 
energy sector is entirely dependable and driven by the prediction of 
wind speed, which by the nature of wind is very stochastic and 
widely random. This s0tudy employs deep multi-fidelity Gaussian 
process regression, used to predict wind speeds for medium term time 
horizons. Data of the RUNE experiment in the west coast of 
Denmark were provided by the Technical University of Denmark, 
which represent the wind speed across the study area from the period 
between December 2015 and March 2016. The study aims to 
investigate the effect of pre-processing the data by denoising the 
signal using empirical wavelet transform (EWT) and engaging the 
vector components of wind speed to increase the number of input 
data layers for data fusion using deep multi-fidelity Gaussian process 
regression (GPR). The outcomes were compared using root mean 
square error (RMSE) and the results demonstrated a significant 
increase in the accuracy of predictions which demonstrated that using 
vector components of the wind speed as additional predictors exhibits 
more accurate predictions than strategies that ignore them, reflecting 
the importance of the inclusion of all sub data and pre-processing 
signals for wind speed forecasting models. 

 
Keywords—Data fusion, Gaussian process regression, signal 

denoise, temporal extrapolation. 

I. INTRODUCTION 

N recent years, there has been a rise in understanding of the 
environmental effects of greenhouse gases. Considerations 

have given rise to demand for green energy sources and have 
motivated a rapid expansion of all its industries, a large 
fraction of which is produced by wind power through wind 
turbines. As of October 2019, more than 20 GW of wind 
power has been constructed in the United Kingdom. In 
addition, according to the government's plan, it intends to 
further increase demand for wind energy and its capacity [1]. 
Nevertheless, the erratic existence of this form of energy 
remains the biggest obstacle in incorporating the strength into 
the electricity grid. Future forecasts help overcome this 
dilemma in order to render wind energy a stable and consistent 
source of electricity. As a result, managing the supply and 
demand of electrical energy, which would reduce the cost 
impact on power system operators, will help integrate wind 
energy into the electrical system [2]. 

As mentioned above, the intermittent nature of wind energy 
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is outlined in challenges that arise, such as non-storability, 
immense variability and limited predictability. This defying 
volatile nature of wind energy categorized in the parameters: 
wind speed and occurrence, have given operators prominence 
in all forecasting methods and how the accuracy of the 
forecasting methods could be enhanced by combining several 
techniques in a single hybrid method [3]. The vast number of 
methods makes finding the most desirable combination that 
produces the most accurate predictions tricky and highly 
investigative. However most of the approaches in the literature 
review rely on point-time forecasts and are classified under: 
(1) Persistence Method; (2) Physical Approach: Numerical 
Climate Prediction (NWP); (3) Statistical Approaches: 
Classical Time Series Models and Artificial Neural Network 
(ANN); (4) Machine Learning Methods; and (5) Dynamic 
hybrid Approaches [4], [5]. 

There are many models for each of the categories listed, and 
several of the models are improved by the early ones. The 
time period of the assignment plays a significant role in 
recruiting a model, in addition to the drawbacks and 
consequences of each model. The time-scale definition of 
wind energy is rather unclear. It may, however, be divided into 
four-fold horizons of specific ranges and applications: 
 Very short-term, ranging from few seconds to 30 minutes 

ahead.  
 Short-term, ranging from 30 minutes to 6 hours ahead. 
 Medium-term, ranging from 6 hours to 1 day ahead. 
 Long-term, ranging from 1 day to 1 week and more ahead 

[6]. 
However, we are interested in the machine learning 

approach, which is based on training with data collected that 
further use the difference between predicted and actual data in 
the almost immediate past to optimize model parameters [7]. 
In this study, the deep multi-fidelity GPR model, a non-
parametric, stochastic process that follows the Bayesian 
regression approach, infers a probabilistic distribution of all 
possible values. Following this, the algorithm works on 
combining two sets of data with different levels of fidelity. 
The first is a (few) high fidelity data with (several) low-
fidelity data, which provides more reliable forecasts without 
total reliance on heavy numerical, costly and time-consuming 
methods to produce high fidelity data collection. We strive to 
increase the amount and sources of low-fidelity data, taking 
into account derivatives and decomposed vector components 
of low-fidelity data. 

Recently, the bulk of models in the literature have drawn 
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focus exclusively to the issue of wind speed forecasting over 
time series. Studies have thoroughly researched machine 
learning and the impact of using GPR in the area of wind 
speed forecasts, and some hybrid models have provided 
impressive findings of successful short-and long-term 
forecasts. For example, [8] used EWT, PACF (partial auto-
correlation function) with GPR. EWT was used to collect 
useful data from the wind speed sequence via a modified 
wavelet filter array, and PACF provided input parameters for 
the GPR to model dynamic features and internal uncertainties. 
The system was able to produce positive precise forecasts and 
calculated wind speed periods, and the findings were favorable 
relative to other models at the point of wind speed forecast. 
Some time series representations include ARMA (Auto-
Regressive Moving Average) [9], improved ARIMA (Auto-
Regressive Integrated Moving Average) [10], FARIMA 
(Fractional Auto-Regressive Integrated Moving Average) 
[11], Grey Predictors [12], and exponential smoothing [13]. 

The alternate combination was preceded by [14], joined by 
AR (auto regressive) and GPR, where AR was used to catch 
the form of the wind speed sequence and GPR was derived 
from the local structure. In addition, automated significance 
determination (ARD) was used to determine the value of 
various variables, and specific forms of covariance functions 
were merged to collect data characteristics. This method was 
compared to the support vector machine (SVM) and the ANN 
and the benchmark forecasting method, the persistence 
approach. The results showed that the combination improved 
the point forecast compared to other models and generated 
satisfactory predictive intervals. A research by Cadenas and 
Rivera [15] finds non-linearity to be a self-regressive 
exogenous paradigm where the  algorithm developed forecasts 
for 1 hour ahead and was compared to both the persistence 
approach and the NAR (nonlinear auto-regressive) which had 
only one component. The findings revealed that the NARX 
medal was the most reliable of the three, indicating the 
function performed by introducing additional variables to 
improve precision. 

II. METHODOLOGY 

A. Gaussian Process Regression 

Gaussian process regression is a non-parametric, stochastic 
method that implements the Bayesian regression approach, 
which results in a likelihood distribution of all possible values. 
The Bayesian method defines the prior distribution, p(w) 
on the equation function, w, and the conversion of possibilities 
on the basis of the data obtained by implementing the Bays 
law. Following, the rule provides a posterior distribution, p 
(w|y, X) includes information from the data set and the 
previously mentioned distribution. However, to estimate 
values at unobserved points of interest, x *, we calculate the 
predictive distribution by taking into account all possible 
predictions using their calculated posterior distribution. We 
consider that all terms of the equation are Gaussian in order to 
map the regression, using this, we solve for the predictive 
distribution to get a Gaussian distribution, where we get a 

point estimate using its mean and a quantification of the 
uncertainty by its variance. The Gaussian cycle is different in 
that it is non-parametric and thus not restricted to a specific 
functional form. For the case of this experiment, the training 
dataset provides the posterior while the predictive posterior 
distribution is computed on the points of interest [16].  

GPR has many benefits, operating well on limited data sets 
and being able to include ambiguity tests on predictions. 
Simply placed, it is the set of points provided by random 
variables that are indexed by time or space. Each and every 
finite collection of these random variables has a normal 
multivariate distribution. GPR is only satisfied if and only if 
there is a Gaussian distribution for any finite collection of all 
data.  
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𝑓 𝑥  ~ 𝐺𝑃 𝑚 𝑥 , 𝑘 𝑥, 𝑥           (3) 

 
Hence, the prior is defined by two parameters: the mean 
function, m(x), representing the trend of the function, 
secondly, the co-variance function (kernel), k (x, x’), 
reflecting the dependence of the structure and it is defined by 
hyperparameters. Moreover, the co-variance function must 
always satisfy a definite positive [17]. 

B. Multi fidelity GPR 

For the field of geostatistics, a more sophisticated method is 
followed, multi-fidelity GPR, where multivariate functions at 
different code levels that represent functions with variable 
fidelities, the lower fidelity data sets are more viable and 
cheaper, hence provide data-rich information that is 
qualitatively less interesting than that of higher fidelities. 
Combining data sets with several fidelities allows for a 
correlation between the different levels of accuracy which 
enhances the learning efficiency, thus giving more accurate 
data without the complete dependence on expensive methods. 
Furthermore, the study employs a GPR model based on the 
Bayesian approaches [18]. Thus, inference in Gausian Process 
(GP) is simple, a joint GP prior is put on training to test latent 
values, based on more than one level of coding. Hence, the 
two levels of multi-fidelity data sets considered in this study 
f1(h) and f2(h) representing the low and high-fidelity data sets. 

From the above fundamental equations, the use of different 
co-variance functions such as: constant, linear, squared 
exponential, Mater and Rational quadratic, defines the 
prediction algorithm for the Gaussian process. Moreover, 
adjusting the hyperparameters defines the co-variance function 
and yields to a more accurate estimation. The additional levels 
used in this experiment are 1st, 2nd derivatives and the 
decomposed east and north components of the low-fidelity 
wind speed data, the additional data possess a very similar 

World Academy of Science, Engineering and Technology
International Journal of Energy and Power Engineering

 Vol:14, No:12, 2020 

381International Scholarly and Scientific Research & Innovation 14(12) 2020 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
ne

rg
y 

an
d 

Po
w

er
 E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
12

, 2
02

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
64

4.
pd

f



 

 

trend to the original data, this invests more for the GPR and 
increases the efficiency of learning and locating the trends 
[19].  

 
𝑓 ℎ
𝑓 ℎ ~ 𝐺𝑃 0

0
,

𝑘 ℎ, ℎ 𝜌𝑘 ℎ, ℎ
𝜌𝑘 ℎ, ℎ 𝜌 𝑘 ℎ, ℎ 𝑘 ℎ, ℎ

  (4) 

 

 

Fig. 1 Flow chart for temporal extrapolation with expected outcome 

III. CASE STUDY 

A. Location Description  

 

Fig. 2 Low-fidelity data from weather research forecast simulations 
 

 

Fig. 3 (a) Location of all 7 lidars and (b) The RUNE experiment 
location at the west coast of Denmark 

 
The experiment took place at a 9 km x 5 km area near the 

west coast of Denmark in the Lemvig municipality; this can be 
shown in Fig. 3 (b). In Fig. 3 (a), we observe the locations of 
the Lidar scanners used to generate the high-fidelity data 
discussed in Section III C, whereas the low-fidelity data were 
generated using weather research forecast simulations 
discussed in Section III B. This area is a strong location of 
interest for offshore wind development and studies. The site is 
well-serviced with 4G network, useful for device monitoring 
and data retrieval, needed for synchronization of the wind 
scanners. In addition, the location is considered very close to 
the test station of wind turbines at Hovsore. The topography of 
the area is described as almost flat coastal farmland, where the 
North Sea and grasslands are separated by a sand 
embankment. Moreover, towards the north side of the area, the 
aforementioned embankment transforms into cliffs that are 
covered by grass. Furthermore, position 1, position 2 and 
position 3 have terrains that are about 43 m above sea level. 
This is a feature of crucial importance for the lidars as it 
provides a clear line of sight to measure wind speeds 
accurately [2].  

B. Low-Fidelity Data 

The low-fidelity data are usually a set of data generated 
using cheap and fast methods that are highly viable. They 
generate data-rich time-series in a short period of time; 
however, the data usually are high uncertainty. For this 
experiment, the low-fidelity data were generated using 
weather research forecast simulations. We gathered data from 
12 different simulations combining various features such as: 
horizontal grid spacing; PBL schemes; atmospheric boundary 
conditions and SST sources. The simulation with the lowest 
accuracy was chosen to represent the low-fidelity data, in our 
case, YSU (0.5). The data set contained 10,298 values of east 
and north vector components each of the wind speed for an 
entire period from December 2015 to March 2016 with a 
prediction interval of 10 minutes represented in Fig. 2. 

C. High-Fidelity Data 

This set was generated using expensive and highly accurate 
scanning lidars, the main problem with lidars is that they have 
to be physically present at each location. The allocation of 
lidars at extreme offshore locations results in destruction of 
equipment at early stages due to the extreme weather 
conditions, thus low availability of data. For this set of data, 
the equipment involved 3 PPI scans covering an azimuthal 
range of 60 degrees at an elevation angle of 1 degree located 
in locations (1, 2 & 3), additionally 2 dual setup lidars were 
configured to match their scans along 3 horizontal virtual lines 
at 50,100 and 150 m (ASL) at locations (1 & 2), 2 scanners 
were adjusted to perform RHI scans intersecting at location 7, 
hence a vertical profile with range gates with 36 different 
heights is achieved. Finally, vertical profiling lidars performed 
VAD scans. The high-fidelity data set had 113 values for the 
same period of time as the low-fidelity data and is shown in 
Fig. 4. 

D. Data Pre-Processing  

The pre-processing of signals before using is always very 
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beneficial, this step helps eliminate unwanted residuals and 
anomalous data in the signal by filtering data according to 
specific measures and trends of the entire signal. For this study 
we employed state-of-the-art EWT. This method works on 
constructing an appropriate wavelet filter bank to act as a 
filtering threshold for the provided data [20].  

 

 

Fig. 4 High-fidelity data from wind scanning lidars 
 
The advancement using this method from previous filtering 

methods relies in its capability of overcoming major issues 
with previous techniques such as; wavelet transform (WT) and 
empirical mode decomposition (EMD), where both mentioned 
process are known to remove sufficient amount of noise from 
the signal; however, the EMD model lacks any mathematical 
theories and is considered highly sensitive to both noise and 
sampling, while for the WT model, the model incapable of 
performing as a self-adaptive due to models requiring the 
parameters specified beforehand. The aforementioned issues 
are why EWT shows promising advantages as it eliminates 
those drawbacks. The approach can be summarized in the 
following main steps:  
1. Extending the signal.  
2. Fourier transforms.  
3. Extracting boundaries. 
4. Building a filter bank.  
5. Extracting the sub band. 

The EWT model identifies the time-series to extract 
different modes in it, the algorithm is then based on robust 
possessing for peaks detections where it performs a spectrum 
segmentation based on the maxima extracted, this is finally 
used to construct the wavelet filter bank [21]. In the figure 
EWT, we illustrate the difference between the filtered and 
original signals. As shown in Fig. 5, the filtered time-series 
(blue line) has fewer spikes and smoother curve form.  

IV. RESULTS AND DISCUSSION 

A. Results of Each Method for the Three Models 

Three different models of the multi-fidelity GPR were 
applied, where the low-fidelity data were employed to stretch 
the margin of values for the high-fidelity data. For the first 

method, only high- and low-fidelity data sets were employed, 
the extrapolation method produced data that follow the pattern 
of high-fidelity data, but the process shows a distorted curve in 
between the gaps of the high-fidelity data as shown in Fig. 6 
(a). The RMSE of the experiment was 1.76.  

 

 

Fig. 5 Original dataset (Black) and filtered response (Blue) 
 
The second model, which involves derivatives of the low-

fidelity data, showed a drop in the RMSE to 1.43, and a 
response curve that had a similar pattern to the low-fidelity 
data and also covered the high-fidelity data appropriately 
represented in Fig. 6 (b). Furthermore, for the introduced 
model, where we pre-process the low-fidelity data to denoise 
the signal and introduce the vector components of the wind 
speed signal in the east and north directions, the response had 
a satisfying drop in the RMSE to 0.82, reflecting the 
improvement in accuracy of predictions. Additional 
confidence bounds (90%) were used to reflect the low 
uncertainty in modelling the high-fidelity data using the 
response of the temporal extrapolation process shown in Fig. 6 
(c). In Fig. 6 (d), a closer look on the representation of the 
response to the high-fidelity data is considered, we show the 
data for hours between 3000 and 3600, the time with the 
richest high-fidelity values.  

Finally, Fig. 6 (e) compares the error for all three methods 
by plotting the difference between all high-fidelity data and 
their corresponding in the response curve. In this figure we see 
that few points, the first and second model, perform better 
predictions, despite the overall superiority to the third model. 
This is mainly due to the presence of these points in positions 
where the pattern observed by the GPR model was more 
accurate at this trial.   

B. Results of RMSE of All Models across all the Data Points 

In addition to comparing the predictions for a single point, 
as shown in Fig. 6, further analysis of the model was carried 
out. The three models were executed for a straight line of 
points starting with the farthest offshore point 6 to the most 
onshore point 2, a total of 36 points. For the first model, the 
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generated RMSE’s ranged between 1.1284 and 2.106, with the 
highest at the first onshore point, and a majority of the highest 
errors at the onshore area. This is due to the complex terrain of 
the area’s geometry. On the other side, offshore points showed 

lower average error due to the calm geometrical conditions at 
sea, although going further offshore shows an increase in error 
as the weather conditions become harsher.  

 

 

Fig. 6 (a) Original GPR method, (b) GPR with derivatives, (c) GPR with derivatives, filtering and vector components, (d) Close up for the third 
method with confidence bounds and (e) Error between response and high-fidelity points for all three methods 

 

 

Fig. 7 Results of RMSE across all Easting points for all three Multi-
fidelity GPRs 

 
Secondly, the test which showed pleasant improvements 

decreasing the highest and lowest error values to 2.037 and 
1.0538 at roughly the same positions raised a question about 
the number of derivatives used, we found that increasing the 
number of derivatives will in fact decrease the error, but with 
more additional layers introduced, the system becomes of high 

complexity and the process time increases. Finally, the third 
model showed a significant drop in RMSE across all points as 
expected. The highest and lowest errors were 1.6332 and 
0.784, respectively. As shown in Fig. 6, the performance of 
the third model exceeds that of the other two and shows a 
clear superiority and improvement in prediction. Furthermore, 
the pattern of errors matches that of the literature provided by 
the Technical university of Denmark, where they used 
meteorological mist and the deviation was found higher at far 
offshore and onshore with the onshore area a little higher [2].  

V. CONCLUSION 

The growing demand for wind energy incorporation into the 
power grid is rapidly increasing and, because the nature of 
wind energy is erratic and stochastic, a single-parameter or 
single-model method is not of a sufficient precision compared 
to industrial standards, so effective and robust hybrid models 
for forecasting wind speed in the short and long term are of 
high importance. In this paper, we showed how pre-processing 
the wind speed signal, hence eliminating the residuals, makes 
the predictions more accurate. In addition, increasing the 
number of layers for the deep multi-fidelity GPR also had a 
drastic effect on the precision of the prediction as it acted as 
additional layer of helpful information for the data fusion 
resulting in a positive direct correlation reflected in a 
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significant reduction in the RMSE [3]. On the other hand, 
adding more layers of input data increases the complexity of 
the system, as more hyperparameters are required to be solved 
for. This results in more execution time to carry out the same 
process for an application where predictions could be for few 
minutes ahead such as; short and very short time horizons. In 
conclusion, achieving higher precision in wind speed 
forecasting through increasing the predictors is a helpful 
method, but the outrageous use might result in huge 
consumption of time that is of crucial importance in this field.  
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