Search results for: Optimal node placement and Wireless sensor networks.
2069 Detection of New Attacks on Ubiquitous Services in Cloud Computing and Countermeasures
Authors: L. Sellami, D. Idoughi, P. F. Tiako
Abstract:
Cloud computing provides infrastructure to the enterprise through the Internet allowing access to cloud services at anytime and anywhere. This pervasive aspect of the services, the distributed nature of data and the wide use of information make cloud computing vulnerable to intrusions that violate the security of the cloud. This requires the use of security mechanisms to detect malicious behavior in network communications and hosts such as intrusion detection systems (IDS). In this article, we focus on the detection of intrusion into the cloud sing IDSs. We base ourselves on client authentication in the computing cloud. This technique allows to detect the abnormal use of ubiquitous service and prevents the intrusion of cloud computing. This is an approach based on client authentication data. Our IDS provides intrusion detection inside and outside cloud computing network. It is a double protection approach: The security user node and the global security cloud computing.
Keywords: Cloud computing, intrusion detection system, privacy, trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10992068 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24932067 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor
Authors: M. Brahim, I. Bahri, Y. Bernard
Abstract:
Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.
Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9642066 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.
Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5482065 Stability and Kinetic Analysis during Vermicomposting of Sewage Sludge
Authors: Ashish Kumar Nayak, Dhamodharan K., Ajay S. Kalamdhad
Abstract:
The present study is aimed at alteration of sewage sludge into stable compost product using vermicomposting of sewage sludge mixed with cattle manure and saw dust in five different proportions based on C/N ratios (C/N 15 (R1), 20 (R2), 25 (R3) and 30 (R4); and control (R5)) by employing an epigeic earthworm Eisenia fetida. Higher reductions in C/N ratio, CO2 evolution and OUR were observed in R4 demonstrated the compost stability. In addition, R4 proved to be best combination for the growth of the earthworms. In order to observe the optimal degradation, kinetics for degradation of organic matter in vermicomposting were quantitatively evaluated. An approach model was developed by assuming that composting process is carried out in a homogeneous way and the kinetics for decomposition reaction is represented by a Monod-type equation. The results exhibit comparable variations in the kinetic constants Km and K3 under varying parameters during vermicomposting process. Results suggested that higher R2 value in R4, enhanced suitability towards Lineweaver-Burke plot. R4 yields higher degradability coefficient (K) reveals that the occurrence of optimal nutrient balance, which not only enhanced the affinity of enzymes towards substrate but also improved its degradation process. Therefore, it can be proved that R4 provided to be the best feed combination for vermicomposting process as compared to other reactors.
Keywords: Vermicomposting, Eisenia fetida, Sewage sludge, C/N ratio, Stability, Enzyme kinetics concept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23502064 Optimal Economic Load Dispatch Using Genetic Algorithms
Authors: Vijay Kumar, Jagdev Singh, Yaduvir Singh, Sanjay Sood
Abstract:
In a practical power system, the power plants are not located at the same distance from the center of loads and their fuel costs are different. Also, under normal operating conditions, the generation capacity is more than the total load demand and losses. Thus, there are many options for scheduling generation. In an interconnected power system, the objective is to find the real and reactive power scheduling of each power plant in such a way as to minimize the operating cost. This means that the generator’s real and reactive powers are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost. This is called optimal power flow problem. In this paper, Economic Load Dispatch (ELD) of real power generation is considered. Economic Load Dispatch (ELD) is the scheduling of generators to minimize total operating cost of generator units subjected to equality constraint of power balance within the minimum and maximum operating limits of the generating units. In this paper, genetic algorithms are considered. ELD solutions are found by solving the conventional load flow equations while at the same time minimizing the fuel costs.Keywords: ELD, Equality constraints, Genetic algorithms, Strings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38592063 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10232062 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.
Keywords: Passive optical networks, fiber to the premises, access network, OTDR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10672061 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller
Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil
Abstract:
The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23672060 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks
Authors: S. Padmapriya, M. Tamilarasi
Abstract:
Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.
Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24662059 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.
Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672058 Robust Design and Optimization of Production Wastes: An Application for Industries
Authors: Christopher C. Ihueze, Charles C. Okpala, Christian E. Okafor, Peter O. Ogbobe
Abstract:
This paper focuses on robust design and optimization of industrial production wastes. Past literatures were reviewed to case study Clamason Industries Limited (CIL) - a leading ladder-tops manufacturer. A painstaking study of the firm-s practices at the shop floor revealed that Over-production, Waiting time, Excess inventory, and Defects are the major wastes that are impeding their progress and profitability. Design expert8 software was used to apply Taguchi robust design and response surface methodology in order to model, analyse and optimise the wastes cost in CIL. Waiting time and overproduction rank first and second in contributing to the costs of wastes in CIL. For minimal wastes cost the control factors of overproduction, waiting-time, defects and excess-inventory must be set at 0.30, 390.70, 4 and 55.70 respectively for CIL. The optimal value of cost of wastes for the months studied was 22.3679. Finally, a recommendation was made that for the company to enhance their profitability and customer satisfaction, they must adopt the Shingeo Shingo-s Single Minute Exchange of Dies (SMED), which will immediately tackle the waste of waiting by drastically reducing their setup time.Keywords: Excess-inventory, setup time, single minute exchange of dies, optimal value, over-production, robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17152057 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37792056 Gas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method
Authors: G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy
Abstract:
The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the same time, the presence of the Ag clusters on the surface of SnO2 depressed the sensor response to ozone.
Keywords: Ag nanoparticles, deposition, characterization, gas sensors, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23892055 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms
Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma
Abstract:
In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16862054 A Novel Design of a Low Cost Wideband Wilkinson Power Divider
Authors: A. Sardi, J. Zbitou, A. Errkik, L. El Abdellaoui, A. Tajmouati, M. Latrach.
Abstract:
This paper presents analysis and design of a wideband Wilkinson power divider for wireless applications. The design is accomplished by transforming the lengths and impedances of the quarter wavelength sections of the conventional Wilkinson power divider into U-shaped sections. The designed power divider is simulated by using ADS Agilent technologies and CST microwave studio software. It is shown that the proposed power divider has simple topology and good performances in terms of insertion loss, port matching and isolation at all operating frequencies (1.8 GHz, 2.45 GHz and 3.55 GHz).
Keywords: ADS Agilent technologies, CST microwave Studio, Microstrip, Wideband, Wilkinson power divider.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57422053 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.
Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14512052 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform
Authors: Shih-Wen Hsiao, Yi-Cheng Tsao
Abstract:
In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.
Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple kinect sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22762051 A Comprehensive Survey and Comparative Analysis of Black Hole Attack in Mobile Ad Hoc Network
Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh
Abstract:
A Mobile Ad-hoc Network (MANET) is a self managing network consists of versatile nodes that are capable of communicating with each other without having any fixed infrastructure. These nodes may be routers and/or hosts. Due to this dynamic nature of the network, routing protocols are vulnerable to various kinds of attacks. The black hole attack is one of the conspicuous security threats in MANETs. As the route discovery process is obligatory and customary, attackers make use of this loophole to get success in their motives to destruct the network. In Black hole attack the packet is redirected to a node that actually does not exist in the network. Many researchers have proposed different techniques to detect and prevent this type of attack. In this paper, we have analyzed various routing protocols in this context. Further we have shown a critical comparison among various protocols. We have shown various routing metrics are required proper and significant analysis of the protocol.
Keywords: Black Hole, MANET, Performance Parameters, Routing Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27602050 Efficient Variable Modulation Scheme Based on Codebook in the MIMO-OFDM System
Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
Because current wireless communication requires high reliability in a limited bandwidth environment, this paper proposes the variable modulation scheme based on the codebook. The variable modulation scheme adjusts transmission power using the codebook in accordance with channel state. Also, if the codebook is composed of many bits, the reliability is more improved by the proposed scheme. The simulation results show that the performance of proposed scheme has better reliability than the the performance of conventional scheme.Keywords: MIMO-OFDM, variable modulation, codebook, channel state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18222049 Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates
Authors: Kyung-Su Na, Ji-Hwan Kim
Abstract:
Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.Keywords: Functionally graded materials, Stress analysis, 3-D finite element method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17412048 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.
Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30652047 A Current Steering Positive Feedback Improved Recycling Folded Cascode OTA
Authors: S. Kumaravel, B. Venkataramani
Abstract:
In the literature, Improved Recycling Folded Cascode (IRFC) Operational Transconductance Amplifier (OTA) is proposed for enhancing the DC gain and the Unity Gain Bandwidth (UGB) of the Recycling Folded Cascode (RFC) OTA. In this paper, an enhanced IRFC (EIRFC) OTA which uses positive feedback at the cascode node is proposed for enhancing the differential mode (DM) gain without changing the unity gain bandwidth (UGB) and lowering the Common mode (CM) gain. For the purpose of comparison, IRFC and EIRFC OTAs are implemented using UMC 90nm CMOS technology and studied through simulation. From the simulation, it is found that the DM gain and CM gain of EIRFC OTA is higher by 6dB and lower by 38dB respectively, compared to that of IRFC OTA for the same power and area. The slew rate of EIRFC OTA is also higher by a factor of 1.5.
Keywords: Cascode Amplifier, CMRR, gm/ID Methodology, Recycling, Slew Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34502046 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications
Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik
Abstract:
Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).
Keywords: Polymer treatment, laser, periodic pattern, cell response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7832045 Bandwidth Enhancement in CPW Fed Compact Rectangular Patch Antenna
Authors: Kirti Vyas, P. K. Singhal
Abstract:
This paper presents a novel CPW fed patch antenna supporting a wide band from 2.7 GHz – 6.5 GHz. The antenna is compact with size 32 x 30 x 1.6mm3, built over FR4-epoxy substrate (εr=4.4). Bandwidth enhancement has been achieved by using the concept of modified ground structure (MGS). For this purpose structural design has been optimized by parametric simulations in CST MWS. The proposed antenna can perform well in variety of wireless communication services including 5.15 GHz- 5.35 GHz and 5.725 GHz- 5.825 GHz WLAN IEEE 802.11 g/a, 5.2/ 5.5/ 5.8 GHz Wi-Fi, 3.5/5.5 GHz WiMax applications and 3.7 - 4.2 GHz C band satellite communications bands. The measured experimental results show that bandwidth (S11 < -10 dB) of antenna is 3.8 GHz. The performance of antenna is studied in terms of reflection coefficient, radiation characteristics, current distribution and gain.
Keywords: Broad band antenna, Compact, CPW fed, WLAN, Wi-Fi, Wi-Max, CST MWS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28742044 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.
Keywords: Convolutional neural networks, coffee bean, peaberry, sorting, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532043 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste
Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil
Abstract:
Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulase enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulase to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulase producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulase activity. The optimal temperature for its growth and cellulase production is 37°C. The optimal temperature of bacterial cellulase activity is 60°C. The cellulase enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36h. showed highest cellulase activity at 120U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulase activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.
Keywords: Acinetobacter sp. KKU44, bagasse, cellulase enzyme, rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26842042 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10202041 Optimal Allocation Between Subprime Structured Mortgage Products and Treasuries
Authors: MP. Mulaudzi, MA. Petersen, J. Mukuddem-Petersen , IM. Schoeman, B. de Waal, JM. Manale
Abstract:
This conference paper discusses a risk allocation problem for subprime investing banks involving investment in subprime structured mortgage products (SMPs) and Treasuries. In order to solve this problem, we develop a L'evy process-based model of jump diffusion-type for investment choice in subprime SMPs and Treasuries. This model incorporates subprime SMP losses for which credit default insurance in the form of credit default swaps (CDSs) can be purchased. In essence, we solve a mean swap-at-risk (SaR) optimization problem for investment which determines optimal allocation between SMPs and Treasuries subject to credit risk protection via CDSs. In this regard, SaR is indicative of how much protection investors must purchase from swap protection sellers in order to cover possible losses from SMP default. Here, SaR is defined in terms of value-at-risk (VaR). Finally, we provide an analysis of the aforementioned optimization problem and its connections with the subprime mortgage crisis (SMC).
Keywords: Investors; Jump Diffusion Process, Structured Mortgage Products, Treasuries, Credit Risk, Credit Default Swaps, Tranching Risk, Counterparty Risk, Value-at-Risk, Swaps-at-Risk, Subprime Mortgage Crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17312040 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.
Keywords: Communication, computer network, data collection, probe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782