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Abstract—This conference paper discusses a risk allocation prob-
lem for subprime investing banks involving investment in subprime
structured mortgage products (SMPs) and Treasuries. In order to
solve this problem, we develop a Lévy process-based model of
jump diffusion-type for investment choice in subprime SMPs and
Treasuries. This model incorporates subprime SMP losses for which
credit default insurance in the form of credit default swaps (CDSs)
can be purchased. In essence, we solve a mean swap-at-risk (SaR)
optimization problem for investment which determines optimal allo-
cation between SMPs and Treasuries subject to credit risk protection
via CDSs. In this regard, SaR is indicative of how much protection
investors must purchase from swap protection sellers in order to
cover possible losses from SMP default. Here, SaR is defined in
terms of value-at-risk (VaR). Finally, we provide an analysis of the
aforementioned optimization problem and its connections with the
subprime mortgage crisis (SMC).

Keywords—Investors; Jump Diffusion Process; Structured Mort-
gage Products; Treasuries; Credit Risk; Credit Default Swaps;
Tranching Risk; Counterparty Risk; Value-at-Risk; Swaps-at-Risk;
Subprime Mortgage Crisis.

I. INTRODUCTION

The 2007-2010 subprime mortgage crisis (SMC) can be
attributed to a confluence of factors such as lax screening
by mortgage originators and a rise in the popularity of new
structured financial products whose risks were difficult to
evaluate. As far as the latter is concerned, subprime residential
mortgage securitization involves the pooling of mortgages that
are subsequently repackaged into interest-bearing securities.
The interest and principal payments from mortgages are passed
through to credit market investors such as subprime investing
banks – herewith, simply known as investors. In so doing, the
risks associated with mortgage securitization are transferred
from originators to special purpose vehicles (SPVs) and struc-
tured mortgage product (SMP) bond holders such as investors.

Mortgage securitization thus represents an alternative and
diversified source of housing finance based on the transfer of
credit risk. Some of the other risks involved are tranching,
counterparty and liquidity risks.

Tranching risk is the risk that arises from the intricacy
associated with the slicing of SMPs into tranches in securiti-
zation deals. Another tranching risk that is of issue for SMPs
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is maturity mismatch risk that results from the discrepancy
between the economic lifetimes of SMPs and the investment
horizons of investors.

Counterparty risk that, in our case, is the risk that a
banking agent does not pay out on a bond, credit derivative
or credit insurance contract. It refers to the ability of banking
agents – such as originators, mortgagors, servicers, investors,
SPVs, trustees, underwriters and depositors – to fulfill their
obligations towards each other. During the SMC, even banking
agents who thought they had hedged their bets by buying
insurance – via credit default swap contracts or monoline
insurance – still faced the risk that the insurer will be unable
to pay.

Liquidity risk arises from situations in which a banking
agent interested in selling (buying) SMPs cannot do it because
nobody in the market wants to buy (sell) those SMPs. Such risk
includes funding and credit crunch risk. Funding risk refers to
the lack of funds or deposits to finance mortgages and credit
crunch risk refers to the risk of tightened mortgage supply and
increased credit standards.

In our contribution, we specifically investigate the securiti-
zation of mortgages which is undertaken as follows. The first
step in the process involve originators that extend mortgages
that are subsequently removed from their balance sheets and
pooled into reference mortgage portfolios. Originators then
sell these portfolios to SPVs – an entity set up by a financial
institution, specifically to purchase mortgages and realize their
off-balance-sheet treatment for legal and accounting purposes.
Next, the SPV finances the acquisition of mortgage portfolios
by issuing tradable, interest-bearing securities that are sold to
investors. In addition, the mortgage portfolios are serviced by
servicers who collect payments from the original mortgagors,
and pass them on – less a servicing fee – directly to SPVs.
Investors receive fixed or floating rate coupons from the
SPV account funded by cash outflows generated by reference
mortgage portfolios.

In the sequel, subprime mortgage securitization mainly
refers to the securitization of such mortgages into SMPs such
as residential mortgage-backed securities (RMBSs) and collat-
eralized debt obligations (CDOs). The SMPs themselves are
structured into tranches. In particular, this paper involves three
such tranches: the senior (usually AAA rated and abbreviated
as sen), mezzanine (usually AA, A, BBB rated and abbreviated
as mezz) and junior (equity) tranches (usually BB, B rated
and unrated and abbreviate as jun) in order of contractually
specified claim priority. At this stage, the location and extent
of subprime risk cannot be clearly described. This is due to the
chain of interacting securities that cause the risk characteristics
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to be opaque. Another contributing factor are the derivatives
that resulted in negative basis trades moving CDO risk and
credit derivatives that created additional long exposure to
subprime mortgages. Determining the extent of the risk is
also difficult because the effects on expected mortgage losses
depend on house prices as the first order risk factor. Simulating
the effects of this through the chain of interacting securities
is very difficult.

SMP insurance is an important issue. Credit default swaps
(CDSs) are financial instruments that are mainly used as a
hedge and protection for debtholders, in particular subprime
SMP investors, from the risk of default (see, for instance, [4]).
Like all swaps and other credit derivatives, CDSs may also
be used to profit from speculation. In the SMC, as subprime
mortgage losses increased because of the high default rate, the
probability increased that those issuing insurance (like CDS
protection sellers) would have to compensate their counterpar-
ties (see [6] for further discussion). This created uncertainty
across the system, as investors wondered which agents would
be required to pay to cover such losses. Our work has a strong
connection with this issue via an investor’s optimal allocation
problem subject swap-at-risk. CDSs are largely not regulated.
As of 2008, there was no central clearinghouse to honor CDSs
in the event a party to a CDS proved unable to perform
its obligations under the CDS contract. Required disclosure
of CDS-related obligations has been criticized as inadequate
(compare with [2] and [4]). Next, a diagrammatic overview of
SMP protection via CDSs is provided.

Protection
Seller

CDs
Counterparty

RMBs
SPV

RML
Reference
Portfolio

Collateral
or Eligible
Investments

1B 1C

1D

1A

1E 1F 1G

Fig. 1: Diagrammatic Overview of SMP Protection via CDSs

Our dynamic model allows for protection against SMP –
in the form of SMPs – losses via CDS contracts. The CDS
counterparty, OR, who is the protection buyer makes a regular

stream of payments constituting the premium leg (see 1A)
to the SMP SPV. This SPV, in turn, makes regular coupon
payments to the protection seller (refer to 1B). These payments
are made until a credit event occurs or until maturity, which
ever happens first. The size of premium payments is dependent
on the quoted default swap spread which is paid on the
face value of the protection and is directly related to credit
ratings. If there is no credit event, the seller of protection
receives the periodic fee from the buyer, and profits if the
reference mortgage portfolio remains fully functional through
the life of the contract and no payout takes place. However,
the protection seller is taking the risk of big losses if a credit
event occurs. Depending on the terms agreed upon at the
onset of the contract when such an event takes place, the
protection seller may deliver either the current cash value of
the referenced bonds or the actual bonds to the protection
buyer via the SMP SPV (refer to 1C and 1D). This payment
to the protection buyer, is known as the protection leg (see
1D). It equals the difference between par and the price of the
cheapest to deliver (CTD) asset associated with the mortgage
portfolio on the face value of the protection. The value of a
CDS contract fluctuates based on the increasing or decreasing
probability that a reference mortgage portfolio will have a
credit event (compare with 1E). Increased probability of such
an event would make the contract worth more for the buyer of
protection, and worth less for the seller. The opposite occurs
if the probability of a credit event decreases. Collateral or
eligible investments are highly rated, highly liquid financial
instruments purchased from the sale proceeds of the initial
SMP (represented by 1G). These investments contribute the
index portion (see 1F) of the SMP coupon and provides
protection payments or the return of principal to SMP bond
holders.

The literature about SMPs and the SMC is growing and
includes the following contributions. The article [5] (see,
also, [10], [7] and [6]) shows that mortgage charge-offs are
more pronounced among originators that are unable to sell
their originate-to-distribute (OTD) mortgages to investors. This
finding supports the view that the credit risk transfer through
the OTD market resulted in the origination of inferior quality
mortgages by originators. We believe that mortgage standards
became slack because securitization gave rise to moral hazard,
since each link in the mortgage chain made a profit while
transferring associated credit risk to the next link (see, for
instance, [6] and [5]). The increased distance between ORs and
the ultimate bearers of risk potentially reduced ORs’ incentives
to screen and monitor mortgagors (see [6]). The increased
complexity of SMPs and markets also reduces investor’s
ability to value them correctly (see, for instance, [6]). The main
purpose of this paper is to address the problem of investment
in subprime SMPs and Treasuries in a Lévy-process setting.
To the best of our knowledge, Lévy process-driven models
that deal with securitization and its relationship with the SMC
were first introduced in [5]. However, the latter paper does
not deal with optimization aspects of securitization. In this
paper, there are several references to support the adoption of
stochastic models for subprime SMP prices and investment as
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well as SMP losses. For our study, the most relevant of these
are [1] that discusses bank asset prices such as subprime SMPs
prices that are driven by Brownian motion and, of course, [9]
that is one of the standard references involving the stochastic
dynamics of (bank) asset price processes.

In this conference paper, we solve a mean swaps-at-risk
(SaR) optimization problem for investment which determines
the optimal allocation of subprime SMPs and Treasuries
subject to credit risk protection via CDSs. In this regard, SaR
is indicative of how much protection investors must purchase
from a swap protection seller in order to cover possible losses
from credit events. The specific questions that we answer are
as follows.

Question 1.1: (Investment in Subprime SMPs and Trea-
suries Model): Can we construct a stochastic dynamic model
for investment in subprime SMPs and Treasuries which in-
volves fund allocation as well as subprime SMP losses via a
jump-diffusion process ? (see Subsection II-B).

Question 1.2: (An Investor’s Optimal Allocation Prob-
lem): Can we solve an investor’s optimization problem that
determines the optimal proportion of funds invested in sub-
prime SMPs and Treasuries subject to SaR ? (see Section III).

Question 1.3: (Connections with the SMC): How does
an investor’s optimal allocation problem solved in Section III
relate to the SMC ? (throughout the paper).

II. SUBPRIME SECURITIZATION MODELS

In this section, we discuss subprime mortgage securitization
and construct a stochastic model of investment in subprime
SMPs and Treasuries under a jump-diffusion process. In this
paper, we use the subprime SMPSs to refer the subprime resi-
dential mortgage-backed securities (RMBSs). These securities
are purchased by the investors from SPVs. In particular, the
mortgage originators pass the subprime residential mortgage
loans ( which we treat them as adjustable-rate mortgages) to
the SPVs that are subsequently purchased by the investors
in the form of subprime RMBSs. In order to model the
uncertainty associated with these issues, we consider the
filtered probability space, (Ω, F, (Ft)0≤t≤T , P), throughout.

A. Subprime mortgage securitization

In this subsection, we consider the modeling of subprime
SMPs price, Treasuries and SMPs losses.

1) Subprime SMP price process with jumps: In the sequel,
an investor invests a proportion of its funds in subprime SMPs
issued by SPV with an interest rate, rM. Generally, SMP bonds
deals pay a floating coupon, rM, while reference mortgage
portfolios (collateral) typically pay a fixed rate, rΛ, until the
reset date on hybrid adjustable rate mortgages (ARMs). In this
case, the risk that interest paid into the deal from the reference
portfolio, rΛ, is not sufficient to make coupon payments, rM,
to SMP bond holders may arise. To mitigate this situation, the
deal may be subject to an available funds cap (AFC). Here,
investors receive interest as the minimum of the sum of the
index rate, rL, (i.e., 6-month LIBOR) and margin, �, or the
weighted average AFC, ra. Symbolically, this means that

rM = min[rL + �, ra]. (1)

In our contribution, the mathematical expectation of the rate of
return on subprime SMPs is denoted by μ = E[rM]. Moreover,
assume that the dynamics of the subprime SMP price process,
Mt, is given by

dMt = Mt−

{(
μ−

n∑
i=1

αiλi

)
dt+ σdZt +

n∑
i=1

αidNi(t)

}
,

t ≥ 0, μ ∈ R, M0 = p ∈ R
+, (2)

where σ > 0 is a constant volatility of Mt, n ∈ N, Zt is
a Brownian motion and for i = 1, . . . , n the process Ni is a
homogeneous Poisson process with intensity λi, αi is the jump
size of the process Mt. In order to avoid negative subprime
SMP prices, we make the assumption that

−1 < α1 < . . . < αn < ∞.

2) Treasuries: Treasuries are bonds issued by national
Treasuries and are the debt financing instruments of the federal
government. There are four types of Treasuries: Treasury
bills, Treasury notes, Treasury bonds and savings bonds. All
Treasuries besides savings bonds are very liquid and are
heavily traded on the secondary market. During the SMC, in-
vestors held their investments in safe assets such as Treasuries.
However, such investments contribute to the prolonging of the
crisis because it resulted in a credit crunch. In the sequel, we
denote the interest rate on Treasuries or Treasuries rate by rT.

Suppose that the value1 process of the Treasuries, T, is given
by

dT(t) = rTT(t)dt, t > 0, T(0) = 1. (3)

This form is indicative of the fact that the value process for
the Treasuries is riskless because it does not contain a noise
term.

3) Investor subprime SMP losses: We suppose that losses
suffered by investors due to SMP defaults is a random variable,
S, with the distribution function, F. In the sequel, we define
this loss as

S : Ω → R
+, (4)

where Ω takes on nonnegative real values that may not nec-
essarily be measurable. Moreover, let θ ≥ 0 be a nonnegative
real number which is an upper bound of S(w), for all w ∈ Ω,
where w is defined as the state of the mortgage market.
Therefore, {w ∈ Ω : S(w) > θ} is empty. This enables us
to define the smallest essential upper bound for the aggregate
securitization losses, S, as

ess sup S(w) = inf{θ ∈ R
+ : P({w : S(w) > θ}) = 0}.

1There is a difference between price and value: the amount of cash that
one pays is a price and value is what it worth. However, in our contribution
we are concerned with the value of the security. Therefore, when we use term
price, what we really mean is value.
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Furthermore, we assume that S is modeled as a compound
Poisson process, for which N is a Poisson process with a
deterministic frequency parameter, φ(t). In this case, N is
stochastically independent of the Brownian motion, Z.

B. A model for investment in subprime SMPs and Treasuries

In this subsection, we construct a stochastic model of an
investor’s investment in subprime SMPs and Treasuries. Such
an investor starts with initial funds, Bπ0 , and the expected rate
of return on subprime SMPs, μ. The investment in SMPs
may yield substantial returns but may also result in losses.
Moreover, for a fixed term [0, T ], we consider a characteriza-
tion of the investor’s nett investment in subprime SMPs and
Treasuries, B

′π, of the form

Nett Investment in SMPs & Treasuries (B
′π) (5)

= Total Investment in SMPs & Treasuries (Bπ)

−Subprime SMP Losses (S),

where the investor’s total investment in subprime SMPs and
Treasuries, Bπ, is the stochastic process (Bπt )t≥0, defined on
the filtered probability space, (Ω, F, (Ft)0≤t≤T , P). Let
π ∈ [0, 1] be the proportion of the investor’s funds invested in
subprime SMPs, and 1−π is the proportion of funds invested
in Treasuries. For t > 0 and Mt, T(t) and S, given by (2), (3)
and (4), respectively, we use (5) to represent the dynamics of
the investor’s total and nett investment in subprime SMPs &
Treasuries by

dBπt = B
π
t−

{(
(1− π)rT + πμ− π

n∑
i=1

αiλi

)
dt+ πσdZt

+π

n∑
i=1

αidNi(t)

}
(6)

and

dB
′π
t = dBπt − dSt, t ≥ 0, B

π
0 = 	 ∈ R

+, (7)

respectively. The solution of (6) is obtained via Itô’s formula
and for Bπ0 = 	 and t = T is found to be

B
π
T = 	 exp

{(
rT + (μ− rT)π − π

n∑
i=1

αiλi −
1

2
π2σ2

)
T

+πσZT +

n∑
i=1

(Ni(T )) ln(1 + παi)

}
. (8)

In the sequel, to avoid the possibility that the total investment
value process, Bπ, is negative, by restricting the investment
strategy, π, as follows.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
1

αn

≤ π < −
1

α1
if αn > 0 > α1;

−∞ < π ≤ −
1

α1
if αn < 0;

−
1

αn

≤ π < ∞ if α1 > 0.

(9)

The next result provides an explicit formula for the expectation
of BπT . In this regard, we assume that the moments of BπT exist.

Proposition 2.1: (Explicit Formula for E[BπT ]): Suppose
that (8) holds, and the moment generating function of homo-
geneous Poisson process Ni(T ) exists, that is,

E[exp{uNi(T )}] = ϕNi(T )(u) = exp[λiT (e
u − 1)], u > 0.

Then we have the expectation of BπT given by

E[BπT ] = 	 exp

{
(rT + (μ− rT)π)T

}
. (10)

In Subsection II-B, we have seen that the dynamic model
of investment given by (7) involves subprime SMP losses, S,
Treasuries rate, rT, expected return on subprime SMPs, μ,
jump heights, αi, proportions of investor funds invested in
subprime SMP, π, and Treasuries, 1−π. Before the SMC, we
believe that 0 < αi < ∞. This was mainly due to the house
price appreciation which caused the value of subprime SMP
to increase. In this regard, investment could have performed
well as a result of positive returns, μ > 0, due to an increase
in subprime SMP prices as in (2) in Subsection II-A1. In
particular, investors experienced lower default rates because of
increases in house prices. This trend attracted investment in the
subprime mortgage market. However, as the SMC unravelled,
house prices depreciated dramatically. Accordingly, the value
of subprime SMP declined and −1 < αi < 0. As a conse-
quence, the default rate increased considerably with investors
incurring large losses from their investments. In addition, some
investors started to allocate away from risky assets towards
safe assets such as Treasuries. Although this strategy was
considered to be safe, it was another factor that prolonged
the SMC.

III. AN INVESTOR’S OPTIMAL ALLOCATION PROBLEM

In this section, we state and solve a constrained optimization
problem for investment in subprime SMPs and Treasuries
with SaR. In this regard, we assume that the dynamics of
investment, subprime SMPSs and Treasuries are given by (8),
(2) and (3), respectively.

A. Definition of SaR

In this subsection, we provide a definition for SaR. In this
regard, suppose that 	 is the initial investor funds and [0, T ]
is a fixed term. Moreover, let qγ be the γ-quantile of the
distribution of πσZT +

∑n

i=1(Ni(T )) ln(1 + παi) for the
proportion of funds π ∈ [0, 1], invested in subprime SMPs,
and B

π
T the corresponding terminal value of an investor’s

investment. This means that qγ is a real number such that

P

(
πσZT +

n∑
i=1

(Ni(T )) ln(1 + παi) ≤ qγ

)

=

∞∑
n1,...,nn=0

{
χ

(
1

|πσ|
√
T

(
qγ −

n∑
i=1

(ni ln(1 + παi))

))
(11)

× exp

(
− T

n∑
i=1

λi

) n∏
i=1

(Tλi)
ni

ni

}
= γ
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In this case, we define the value-at-risk (VaR) associated with
investment as

VaR(	, π, T ) = 	 exp

{(
rT + (μ− rT)π − π

n∑
i=1

αiλi

−
1

2
π2σ2

)
T + qγ

}
. (12)

We are now able to define SaR.
Definition 3.1: (Definition of SaR): Suppose that the P

and VaR(	, π, T ) are as in the above. In this case, SaR is
defined as

SaR(	, π, T ) = 	 exp(rTT )−VaR(	, π, T ), (13)

where π is the proportion of investor funds invested in SMP
with 	 and [0, T ] being an investor’s initial funds and planning
term, respectively. In particular, (13) reveals that the SaR is
the difference between the expected value of the profit-loss
distribution and VaR of the investment in subprime SMPs
and Treasuries.

B. Statement of an investor’s optimal allocation problem

In this subsection, we formulate a constrained optimization
problem for investment in subprime SMPs and Treasuries
subject to SaR, where SaR is defined as a measure of the
protection required against possible subprime SMP losses. For
a constant bound, A, the mathematical formulation of this
problem is given below.

Problem 3.2: (Statement of an investor’s optimal alloca-
tion problem):

Assume that B
π
T and E[BπT ] are given by (8) and (10),

respectively. For t ≥ 0, we give a mathematical statement
of an investor’s investment problem with SaR as follows

max
π∈[0,1]

E[BπT ] subject to (8) and SaR(	, π, T ) ≤ A, (14)

where [0, T ] is a fixed term and A is the maximum protection
that can be acquired.

In Subsection III-B, we consider a mean-SaR optimization
problem (see Problem 3.2). This problem maximizes the
expected terminal value of total investment subject to SaR
– defined as a measure of the protection required against
possible losses from subprime SMP investments. Moreover,
this problem enables us to analyze the features of CDSs which
was another derivative that fueled the SMC.

The solution of Problem 3.2 can only be obtained through
numerical methods. However, this is beyond the scope of this
paper. By way of partially addressing this problem, Subsection
III-C only contains an illustration of the behavior of the
solution. In particular, through differential calculus, we found
that the solution to our problem has to be the largest investment
strategy, π, that satisfies both the SaR-constraint in (14) and
conditions in (9). Furthermore, Subsection III-D discussed a
numerical algorithm that can be followed in order to approxi-
mate a solution. Also, Problem 3.2 reveals that investors will

not only be exposed to credit risk but counterparty risk as
well. The latter occurs when investors experience SMP losses
and the swap protection seller fails to honor its obligation. In
this case will have to use its capital to absorb all theses losses.
In the situation where investors do not have enough capital,
they will go bankrupt. This situation can cause systemic risk
in the case where investors engaged in interbank lending. On
the other hand, if investments perform well, minimal mortgage
losses will ably be compensated for by credit default insurance
via CDS contracts.

C. Solution of an investor’s optimal allocation problem

The problem we face is that qγ cannot be represented
explicitly. This brings us to the conclusion that the analytical
solution of Problem 3.2 is not possible. However, using (10)
we are able to tell the behavior of the solution. In this regard,
we note that

∂E[BπT ]

∂π
> 0

provided μ > rT, i.e., E[BπT ] is increasing function over the
interval 0 ≤ π ≤ 1. It then follows that the optimal solution of
Problem 3.2 is the largest proportion of the investor’s initial
funds, 	, i.e. π ∈ [0, 1] that satisfies the SaR constraint and
condition (9). For optimization problems of this kind, the
solution(s) can only be found through numerical methods.

D. Numerical procedure

In this subsection, we focus on the numerical analysis of
subprime RMBSs models developed in our paper. However,
the numerical aspects of CDOs are left out for future research.
In order to achieve this goal, we employ techniques from
Gaussian stochastic processes (see, for instance, [8]) to con-
struct a numerical algorithm that can be used to approximate
the solution of Problem 3.2.

1) Gaussian diffusion model for subprime mortgage secu-
ritization: In this subsection, we replace the aforementioned
model in Subsection II-A1 with the generalized inverse Gaus-
sian (GIG) diffusion model. In particular, we present the
stochastic analysis related to the GIG model and apply it to
Problem 3.2. Suppose that the dynamics of Treasuries, T, is
given by (3) and the subprime SMP price process from (2) is
given by

dMt = Mt{μdt+ dLt}, t ≥ 0, M0 = p, (15)

where Lt = W(t)−
1

2
σ2

∫ t

0

W
2β(s)ds− w, L0 = 0.

Using (3) and (15), we write the value process of the investor’s
total investment as

B
π
t = 	 exp

{
((1 − π)rT + πμ)t+ π

(
W(t)

−
1

2
σ2

∫ t

0

W
2β(s)ds− w

)}
, (16)

B
π
0 = 	.
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Moreover, W(t) is defined as the GIG diffusion process which
satisfies the stochastic differential equation (SDE) given by

dW(t) =
1

4
σ2
W
2β−2(t)

(
� + 2(2β + λ− 1)W(t)

−υW2(t)

)
dt+ σWβ(t)dZt, W(0) = w, (17)

where σ > 0, β ≥ 1
2 , υ, � ≥ 0, max(υ,�) > 0, and

λ ∈ R if υ, � > 0;

λ ≤ min(0, 2(1− β)) if υ = 0, � > 0;

λ ≥ min(0, 2(1− β)) if υ > 0, � = 0.

(18)

The Gaussian diffusion model is a generalization of the Black-
Scholes model, which correspond to β = � = 0, λ = 1,
υ = −2.

In the following lemma we decompose the subprime SMP
price process presented in (15). The idea of the lemma is to
demonstrate the useful features of the GIG diffusion model
construction.

Lemma 3.3: (Decomposition of the Subprime SMP
Price): Suppose that Mt and W(t) satisfy (15) and (17), respec-
tively. Then we can decompose Mt into a drift term multiplied
by a local martingale, i.e.,

Mt = p exp

{
μt+

1

4
σ2

∫ t

0

W
2β−2(s)

(
� + 2(2β + λ

−1)W(s)− υW2(s)

)
ds

}
× exp

{
σ

∫ t

0

W
β(s)dZs

−
1

2
σ2

∫ t

0

W
2β(s)ds

}
, t ≥ 0.

The next lemma contains useful results concerning (17), which
will be required in order to describe the investor’s total
investment value process.

Lemma 3.4: (Scalar Multiple of GIG Diffusion is also
GIG Diffusion): Suppose that W(t) is the GIG diffusion given
by (17) and π > 0 is the proportion of investor funds invested
in subprime SMP. Then the process W̃(t) = πW(t) is also a
GIG diffusion with W̃(0) = πW(0) and parameters σ̃ = σπ1−β ,

�̃ = �π, υ̃ = υπ−1. In addition, β and λ in (17) remained
the same.

Remark 3.5: (Investment Value Process): The results of
Lemma 3.4 together with (16) gives us the investor’s total
investment value process of the form

B
π
t = 	 exp

{
((1− π)rT + μ̄)T + L̃t

}
, t ≥ 0, (19)

where

μ̄ = πμ and L̃t = W̃(t)−
1

2
σ̃2

∫ t

0

W̃
2β(s)ds − πw,(20)

t ≥ 0.

From Definition 3.1, we see that the γ-quantile of L̃T needs
to be determined. Moreover, the usefulness of SaR(	, π, T )
stems from the fact that it is independent of moments of BπT .
Therefore, it can be defined for finite or infinite moments of
B
π
T . Despite the fact that SaR is not dependent on the mo-

ments, in order to solve Problem 3.2, we require the existence
of a first moment of BπT that has to be finite. However, it is not
possible to decide if BπT has a finite mathematical expectation.
In this regard, we assume that W(T ) or W̃(T ) have the stationary
distribution of the process W or W̃ respectively, for time horizon
T which is sufficiently large.

Proposition 3.6: (Finite Mean of BπT ): Suppose that W(T )
and W̃(T ) are GIG diffusion processes with constants �, υ, λ,

β and �̃, υ̃, λ, β respectively. Let π > 0 be the proportion
of investor funds invested in subprime SMP. Then B

π
T has a

finite mean if υ̃ = υπ−1 > 2.
In line with Proposition 3.6, the optimization Problem 3.2 is

well-defined and solveable. However, the question is whether
the approach can be achieved via analytical or numerical
means. In the next corollary we discuss the analytic approach
for solving Problem 3.2.

Corollary 3.7: (Analytic Approach for Solving Problem
3.2) Suppose that the dynamic of W(t) is given by (17). Then
for β = 1, υ = 0, we have

dW(t) =

(
1

4
σ2� +

1

2
σ2(1 + λ)W(t)

)
dt

+σW(t)dZt, W(0) = w, (21)

which is interpreted as mean-reverting model. Furthermore,
the solution of (21) is given by

W(t) = exp

(
1

2
σ2λt+ σZt

){
w

∫ t

0

exp

+
1

4
σ2�

(
−

1

2
σ2λs− σZs

)
ds

}
,

and its expected value is written as

E[W(t)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(
1
2σ

2t(λ+ 1)

){
w

+ 1
4λ�σ2λ

(
1− exp(−t)

)}
if λ �= −1;

w − 1
4�

(
1− exp(σ2t)

)
if λ = −1.

Also, we have that

Lt =
1

4
σ2�t+

1

2
(1 + λ)σ2

∫ t

0

W(s)ds+ σ

∫ t

0

W(s)dZs

−
1

2
σ2

∫ t

0

W
2(s)ds. (22)

We obtain the same representations for W̃(t) and L̃t if we
substitute � by �̃ = π�.

Although this corollary provides us with some analytical
properties of the process that is important for solving the
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mean-SaR optimization problem, the closed form solution
cannot be determined. This brings us to the presentation of the
following numerical algorithm that can be used to determine
a solution to Problem 3.2.

2) Numerical algorithm for Problem 3.2: This subsection
discusses a numerical approximation of the solution(s) to
Problem 3.2. In particular, we discuss an iterative method that
can be implemented in order to find the optimal investment
strategy for an investor subject to SaR. We note that the Monte-
Carlo method may be helpful to achieve the solution. In the
sequel, we first present the properties of Problem 3.2. The
properties of the expectation operator together with (20) allow
us to derive the inequality

E[BπT ] ≥ 	 exp

{
((1 − π)rT + μ̄)T +E[L̃T ]

}

= 	 exp

{
((μ− rT)π + rT)T +

1

4
σ2�πT (23)

+
1

2
π2λσ2

∫ T

0

E[W2(s)]ds

}

= 	 exp(rTT ) exp(πγ + π2λα).

If the expected rate of return on subprime SMP is greater
than Treasuries rate, i.e., μ > rT, the constants γ and α are
both positive. In addition, whether the right-hand side of (23)
increases depends on the intensity, λ. On the other hand, if
the right-hand side of (23) increases in π and is large, so is
the left-hand side. More precisely, for a non-negative λ the
right-hand side can be made arbitrarily large by increasing
the proportion of investor funds invested in subprime SMP, π.
Thus, in solving Problem 3.2 numerically, we replace the value
of the investor’s expected terminal investment by the right-
hand side of (23). As a consequence, we only have to find
the largest proportion of the funds invested in subprime SMP
which complies with the protection against possible losses
from that investment measured by SaR(	, π, T ). In the sequel,
if we use the inequality

W̃(t) ≥ W̃(t)−
1

2
σ2

∫ t

0

W̃(s)ds

and consider the stationary distribution for W̃(T ) as a better
approximation of its exact distribution then we can solve the
SaR-constraint to obtain the optimal investment in subprime
SMP such that the constraint is still satisfied. Take note that
in this case the stationary distribution of W̃(T ) is an inverse
gamma distribution.

A numerical iterations that can be used to solve Problem
3.2 are given below. For i = 1, . . . ,K with K being large.

Step 1: Simulate the trajectories (Zi
t)0≤t≤T of the Brown-

ian motion (Zt)0≤t≤T .
Step 2: Determine the numerical value for Wi(t) and∫ T

0
W
2
i (t)dt of W(T ) and

∫ T

0
W
2(t)dt, respectively, from the

path followed by (Zi
t)0≤t≤T .

Step 3: ∀ π ∈ R compute

L̃
πi
T = πWi(T )−

1

2
σ2π

∫ T

0

W
2
i (t)dt− πw.

Step 4: Find the approximations Ψ̃(π) for E[BπT ] and
Υ̃(	, π, T ) for SaR(	, π, T ):

Ψ̃(π) =
	

K

K∑
i=1

exp

(
(rT + (μ− rT)π)T + L̃

πi
T

)
.

Υ̃(	, π, T ) = 	 exp(rTT )

[
1− exp

(
π(μ− rT)T + q̃γ

)]
,

where q̃γ is the γ-quantile of the empirical distribution of L̃πiT .

Step 5: Finally, select a proportion of investor funds in-
vested in subprime SMP with the largest value of Ψ̃(π) such
that Υ̃(	, π, T ) is below or equal to a constant A for the SaR.

IV. CONCLUSIONS AND FUTURE INVESTIGATIONS

In this conference paper, we investigated the optimal in-
vestment strategy in subprime SMPs and Treasuries under
a jump-diffusion process. In this regard, we constructed the
stochastic dynamics of investment in subprime SMPs and
Treasuries in a Lévy-process setting. This model enabled us
to state and solve an optimization problem for investment
with a SaR constraint. In Section III, we conclude that this
problem cannot be solved by an analytical approach. However,
we have found that the optimal solution of Problem 3.2
is the investor’s largest investment strategy π ∈ [0, 1] that
satisfies the SaR constraint in (14) and condition (9 ). We
also found an association between our optimization problem
and the SMC. An open problem involves the implementation
of the numerical algorithm in Subsection III-D2. In order to
accomplish this, we require real banking data to determine the
optimal portfolio for investors before and during the SMC.
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