Search results for: fixed satellite applications.
1055 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace
Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali
Abstract:
The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.Keywords: Induction, amorphous silica, carbon microstructure, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16671054 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.
Keywords: Client classification, loan suitability, risk rating, CART analysis, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781053 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8751052 A Study of Gaps in CBMIR Using Different Methods and Prospective
Authors: Pradeep Singh, Sukhwinder Singh, Gurjinder Kaur
Abstract:
In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.
Keywords: Classification, clustering, content-based image retrieval (CBIR), relevance feedback (RF), statistical similarity matching, support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17901051 Decision Tree for Competing Risks Survival Probability in Breast Cancer Study
Authors: N. A. Ibrahim, A. Kudus, I. Daud, M. R. Abu Bakar
Abstract:
Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed.Keywords: Competing risks, Decision tree, Simulation, Subdistribution Proportional Hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23751050 Graph-Based Text Similarity Measurement by Exploiting Wikipedia as Background Knowledge
Authors: Lu Zhang, Chunping Li, Jun Liu, Hui Wang
Abstract:
Text similarity measurement is a fundamental issue in many textual applications such as document clustering, classification, summarization and question answering. However, prevailing approaches based on Vector Space Model (VSM) more or less suffer from the limitation of Bag of Words (BOW), which ignores the semantic relationship among words. Enriching document representation with background knowledge from Wikipedia is proven to be an effective way to solve this problem, but most existing methods still cannot avoid similar flaws of BOW in a new vector space. In this paper, we propose a novel text similarity measurement which goes beyond VSM and can find semantic affinity between documents. Specifically, it is a unified graph model that exploits Wikipedia as background knowledge and synthesizes both document representation and similarity computation. The experimental results on two different datasets show that our approach significantly improves VSM-based methods in both text clustering and classification.Keywords: Text classification, Text clustering, Text similarity, Wikipedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21201049 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14461048 First Principles Study of Structural and Elastic Properties of BaWO4 Scheelite Phase Structure under Pressure
Authors: A. Benmakhlouf, A. Bentabet
Abstract:
In this paper, we investigated the athermal pressure behavior of the structural and elastic properties of scheelite BaWO4 phase up to 7 GPa using the ab initio pseudo-potential method. The calculated lattice parameters pressure relation have been compared with the experimental values and found to be in good agreement with these results. Moreover, we present for the first time the investigation of the elastic properties of this compound using the density functional perturbation theory (DFPT). It is shown that this phase is mechanically stable up to 7 GPa after analyzing the calculated elastic constants. Other relevant quantities such as bulk modulus, pressure derivative of bulk modulus, shear modulus; Young’s modulus, Poisson’s ratio, anisotropy factors, Debye temperature and sound velocity have been calculated. The obtained results, which are reported for the first time to the best of the author’s knowledge, can facilitate assessment of possible applications of the title material.Keywords: Pseudo-potential method, pressure, structural and elastic properties, scheelite BaWO4 phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21201047 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles
Authors: S. K. Khosrowshahi, E. Güler
Abstract:
This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.Keywords: Image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10481046 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task
Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat
Abstract:
The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481045 A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique
Authors: Nisar Ahmed Memon
Abstract:
Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature.Keywords: Adaptive Thresholding, Companding Technique, Integer Wavelet Transform, Reversible Watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18711044 Speedup Breadth-First Search by Graph Ordering
Abstract:
Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.
Keywords: Breadth-first search, BFS, graph ordering, graph algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6381043 Human Facial Expression Recognition using MANFIS Model
Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar
Abstract:
Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061042 A Comparative Study on the Creativity of Organizations in Office Management and Secretarial Work and the Assessment of Creativity among Students Training in This Field
Authors: Mehmet Altınöz
Abstract:
Today, the working areas put forward the administration of change. In order to provide this; it is required from the organizations to be creative. Professional creativity in offices depends on an environment that enables the development of the organization only after the individual or collective exertions within the organization. By providing this environment, the organization will gain efficiency, productivity, and work pleasure. In order to bring up the workforce appropriate to the related expectations, the professional creativity of the office management and secretarial profession candidates should be evaluated, education programs appropriate to this and related directly with the service quality should be prepared and the future of this profession should be directed. The aim of this study is to ensure the attention to improve the prepared education program as well as the creative thoughts and their applications, when carrying out an office management and secretarial training. 144 students took place in this research and a questionnaire of 48 questions was carried out.
Keywords: Creativity, professional creativity, creativity evaluation, office management, secretarial
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12031041 Building Virtual Reality Environments for Distance Education on the Web: A Case Study in Medical Education
Authors: Kosmas Dimitropoulos, Athanasios Manitsaris, Ioannis Mavridis
Abstract:
The paper presents an investigation into the role of virtual reality and web technologies in the field of distance education. Within this frame, special emphasis is given on the building of web-based virtual learning environments so as to successfully fulfill their educational objectives. In particular, basic pedagogical methods are studied, focusing mainly on the efficient preparation, approach and presentation of learning content, and specific designing rules are presented considering the hypermedia, virtual and educational nature of this kind of applications. The paper also aims to highlight the educational benefits arising from the use of virtual reality technology in medicine and study the emerging area of web-based medical simulations. Finally, an innovative virtual reality environment for distance education in medicine is demonstrated. The proposed environment reproduces conditions of the real learning process and enhances learning through a real-time interactive simulator.
Keywords: Distance education, medicine, virtual reality, web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24921040 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651039 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems
Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah
Abstract:
This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses, is one of the main issues in the development of renewable energy systems. A procedure for three converters−conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.Keywords: Flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27861038 Qmulus – A Cloud Driven GPS Based Tracking System for Real-Time Traffic Routing
Authors: Niyati Parameswaran, Bharathi Muthu, Madiajagan Muthaiyan
Abstract:
This paper presents Qmulus- a Cloud Based GPS Model. Qmulus is designed to compute the best possible route which would lead the driver to the specified destination in the shortest time while taking into account real-time constraints. Intelligence incorporated to Qmulus-s design makes it capable of generating and assigning priorities to a list of optimal routes through customizable dynamic updates. The goal of this design is to minimize travel and cost overheads, maintain reliability and consistency, and implement scalability and flexibility. The model proposed focuses on reducing the bridge between a Client Application and a Cloud service so as to render seamless operations. Qmulus-s system model is closely integrated and its concept has the potential to be extended into several other integrated applications making it capable of adapting to different media and resources.Keywords: Cloud Services, GPS, Real-Time Constraints, Shortest Path, System Management and Traffic Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17971037 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.
Keywords: Finite element model, rotordynamic system, model reduction, substructuring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40771036 Study of Dual Fuel Engine as Environmentally Friendly Engine
Authors: Nilam S. Octaviani, Semin
Abstract:
The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine. However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.
Keywords: Diesel engine, dual fuel engine, emissions, technical characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8991035 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: N. Georgoulopoulos, A. Hatzopoulos, K. Karamitsios, K. Kotrotsios, A. I. Metsai
Abstract:
Current server systems are responsible for critical applications that run in different infrastructures, such as the cloud, physical machines, and virtual machines. A common challenge that these systems face are the various hardware faults that may occur due to the high load, among other reasons, which translates to errors resulting in malfunctions or even server downtime. The most important hardware parts, that are causing most of the errors, are the CPU, RAM, and the hard drive - HDD. In this work, we investigate selected CPU, RAM, and HDD errors, observed or simulated in kernel ring buffer log files from GNU/Linux servers. Moreover, a severity characterization is given for each error type. Understanding these errors is crucial for the efficient analysis of kernel logs that are usually utilized for monitoring servers and diagnosing faults. In addition, to support the previous analysis, we present possible ways of simulating hardware errors in RAM and HDD, aiming to facilitate the testing of methods for detecting and tackling the above issues in a server running on GNU/Linux.
Keywords: hardware errors, Kernel logs, GNU/Linux servers, RAM, HDD, CPU
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6921034 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22481033 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (Bi)digraphs, rough set theory, systems of interacting agents, complex systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11941032 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin
Abstract:
ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731031 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa
Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett
Abstract:
This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile image-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visualbased application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.Keywords: ICT4D, mobile technology, tuberculosis, visualbased reminder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771030 Accrual Based Scheduling for Cloud in Single and Multi Resource System: Study of Three Techniques
Authors: R. Santhosh, T. Ravichandran
Abstract:
This paper evaluates the accrual based scheduling for cloud in single and multi-resource system. Numerous organizations benefit from Cloud computing by hosting their applications. The cloud model provides needed access to computing with potentially unlimited resources. Scheduling is tasks and resources mapping to a certain optimal goal principle. Scheduling, schedules tasks to virtual machines in accordance with adaptable time, in sequence under transaction logic constraints. A good scheduling algorithm improves CPU use, turnaround time, and throughput. In this paper, three realtime cloud services scheduling algorithm for single resources and multiple resources are investigated. Experimental results show Resource matching algorithm performance to be superior for both single and multi-resource scheduling when compared to benefit first scheduling, Migration, Checkpoint algorithms.Keywords: Cloud computing, Scheduling, Migration, Checkpoint, Resource Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19221029 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh
Abstract:
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18251028 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm
Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna
Abstract:
Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34821027 Risk Assessment for Aerial Package Delivery
Authors: Haluk Eren, Ümit Çelik
Abstract:
Recent developments in unmanned aerial vehicles (UAVs) have begun to attract intense interest. UAVs started to use for many different applications from military to civilian use. Some online retailer and logistics companies are testing the UAV delivery. UAVs have great potentials to reduce cost and time of deliveries and responding to emergencies in a short time. Despite these great positive sides, just a few works have been done for routing of UAVs for package deliveries. As known, transportation of goods from one place to another may have many hazards on delivery route due to falling hazards that can be exemplified as ground objects or air obstacles. This situation refers to wide-range insurance concept. For this reason, deliveries that are made with drones get into the scope of shipping insurance. On the other hand, air traffic was taken into account in the absence of unmanned aerial vehicle. But now, it has been a reality for aerial fields. In this study, the main goal is to conduct risk analysis of package delivery services using drone, based on delivery routes.
Keywords: Drone risk assessment, drone package delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19631026 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems
Authors: Sui Xin, Li Chunsheng, Tian Di
Abstract:
Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.
Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707