Search results for: Low Temperature Combustion
584 Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process
Authors: Amin Esmaeilzadeh, Mohammad Sadeghi, Farhad Kolahan
Abstract:
Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and increase the quality of welded plates, a fixture can be used as a practical and low cost method with high efficiency. In this study, a coupled thermo-mechanical finite element model is coded in the software ANSYS to simulate the behavior of thin plates located by a 3-2-1 positioning system during the welding process. Computational results are compared with recent similar works to validate the finite element models. The agreement between the result of proposed model and other reported data proves that finite element modeling can accurately predict the behavior of welded thin plates.
Keywords: Welding, thin plate, buckling distortion, fixture locators, finite element modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410583 A DOE Study of Ultrasound Intensified Removal of Phenol
Authors: P. R. Rahul, A. Kannan
Abstract:
Ultrasound-aided adsorption of phenol by Granular Activated Carbon (GAC) was investigated at different frequencies ranging from 35 kHz, 58 kHz, and 192 kHz. Other factors influencing adsorption such as Adsorbent dosage (g/L), the initial concentration of the phenol solution (ppm) and RPM was also considered along with the frequency variable. However, this study involved calorimetric measurements which helped is determining the effect of frequency on the % removal of phenol from the power dissipated to the system was normalized. It was found that low frequency (35 kHz) cavitation effects had a profound influence on the % removal of phenol per unit power. This study also had cavitation mapping of the ultrasonic baths, and it showed that the effect of cavitation on the adsorption system is irrespective of the position of the vessel. Hence, the vessel was placed at the center of the bath. In this study, novel temperature control and monitoring system to make sure that the system is under proper condition while operations. From the BET studies, it was found that there was only 5% increase in the surface area and hence it was concluded that ultrasound doesn’t profoundly alter the equilibrium value of the adsorption system. DOE studies indicated that adsorbent dosage has a higher influence on the % removal in comparison with other factors.
Keywords: Ultrasound, adsorption, granulated activated carbon, phenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877582 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity
Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan
Abstract:
Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.
Keywords: Ionic conductivity, Palm kernel oil-based monoester polyol, polyurethane, solid polymer electrolyte.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144581 Biosorption of Cu (II) and Zn (II) from Real Wastewater onto Cajanus cajan Husk
Authors: Mallappa A. Devani, John U. Kennedy Oubagaranadin, Basudeb Munshi
Abstract:
In this preliminary work, locally available husk of Cajanus cajan (commonly known in India as Tur or Arhar), a bio-waste, has been used in its physically treated and chemically activated form for the removal of binary Cu (II) and Zn(II) ions from the real waste water obtained from an electroplating industry in Bangalore, Karnataka, India and from laboratory prepared binary solutions having almost similar composition of the metal ions, for comparison. The real wastewater after filtration and dilution for five times was used for biosorption studies at the normal pH of the solutions at room temperature. Langmuir's binary model was used to calculate the metal uptake capacities of the biosorbents. It was observed that Cu(II) is more competitive than Zn(II) in biosorption. In individual metal biosorption, Cu(II) uptake was found to be more than that of the Zn(II) and a similar trend was observed in the binary metal biosorption from real wastewater and laboratory prepared solutions. FTIR analysis was carried out to identify the functional groups in the industrial wastewater and EDAX for the elemental analysis of the biosorbents after experiments.
Keywords: Biosorption, Cajanus cajan, multi metal remediation, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945580 Simulation of Thermal Storage Phase Change Material in Buildings
Authors: Samira Haghshenaskashani, Hadi Pasdarshahri
Abstract:
One of the potential and effective ways of storing thermal energy in buildings is the integration of brick with phase change materials (PCMs). This paper presents a two-dimensional model for simulating and analyzing of PCM in order to minimize energy consumption in the buildings. The numerical approach has been used with the real weather data of a selected city of Iran (Tehran). Two kinds of brick integrated PCM are investigated and compared base on outdoor weather conditions and the amount of energy consumption. The results show a significant reduction in maximum entering heat flux to building about 32.8% depending on PCM quantity. The results are analyzed by various temperature contour plots. The contour plots illustrated the time dependent mechanism of entering heat flux for a brick integrated with PCM. Further analysis is developed to investigate the effect of PCM location on the inlet heat flux. The results demonstrated that to achieve maximum performance of PCM it is better to locate PCM near the outdoor.Keywords: Building, Energy Storage, PCM, Phase Change Material
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188579 The Buffer Gas Influence Rate on Absolute Cu Atoms Density with regard to Deposition
Authors: S. Sobhanian, H. Naghshara, N. Sadeghi, S. Khorram
Abstract:
The absolute Cu atoms density in Cu(2S1/2ÔåÉ2P1/2) ground state has been measured by Resonance Optical Absorption (ROA) technique in a DC magnetron sputtering deposition with argon. We measured these densities under variety of operation conditions: pressure from 0.6 μbar to 14 μbar, input power from 10W to 200W and N2 mixture from 0% to 100%. For measuring the gas temperature, we used the simulation of N2 rotational spectra with a special computer code. The absolute number density of Cu atoms decreases with increasing the N2 percentage of buffer gas at any conditions of this work. But the deposition rate, is not decreased with the same manner. The deposition rate variation is very small and in the limit of quartz balance measuring equipment accuracy. So we conclude that decrease in the absolute number density of Cu atoms in magnetron plasma has not a big effect on deposition rate, because the diffusion of Cu atoms to the chamber volume and deviation of Cu atoms from direct path (towards the substrate) decreases with increasing of N2 percentage of buffer gas. This is because of the lower mass of N2 atoms compared to the argon ones.Keywords: Deposition rate, Resonance Optical Absorption, Sputtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366578 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide
Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov
Abstract:
The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.
Keywords: Refractometric method, dielectric constant, molecular dynamics, aqueous solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002577 Simulation of Natural Convection in Concentric Annuli between an Outer Inclined Square Enclosure and an Inner Horizontal Cylinder
Authors: Sattar Al-Jabair, Laith J. Habeeb
Abstract:
In this work, the natural convection in a concentric annulus between a cold outer inclined square enclosure and heated inner circular cylinder is simulated for two-dimensional steady state. The Boussinesq approximation was applied to model the buoyancy-driven effect and the governing equations were solved using the time marching approach staggered by body fitted coordinates. The coordinate transformation from the physical domain to the computational domain is set up by an analytical expression. Numerical results for Rayleigh numbers 103 , 104 , 105 and 106, aspect ratios 1.5 , 3.0 and 4.5 for seven different inclination angles for the outer square enclosure 0o , -30o , -45o , -60o , -90o , -135o , -180o are presented as well. The computed flow and temperature fields were demonstrated in the form of streamlines, isotherms and Nusselt numbers variation. It is found that both the aspect ratio and the Rayleigh number are critical to the patterns of flow and thermal fields. At all Rayleigh numbers angle of inclination has nominal effect on heat transfer.Keywords: natural convection, concentric annulus, square inclined enclosure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852576 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918575 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka
Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon
Abstract:
Kandy district in Sri Lanka, has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed.
Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.
Keywords: Adaptation of climate-smart technology, climate change, perception, rain-fed paddy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248574 Ozone Assisted Low Temperature Catalytic Benzene Oxidation over Al2O3, SiO2, AlOOH Supported Ni/Pd Catalytic
Authors: V. Georgiev
Abstract:
Catalytic oxidation of benzene assisted by ozone, on alumina, silica, and boehmite-supported Ni/Pd catalysts was investigated at 353 K to assess the influence of the support on the reaction. Three bimetallic Ni/Pd nanosized samples with loading 4.7% of Ni and 0.17% of Pd supported on SiO2, AlOOH and Al2O3 were synthesized by the extractive-pyrolytic method. The phase composition was characterized by means of XRD and the surface area and pore size were estimated using Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. At the beginning of the reaction, catalysts were significantly deactivated due to the accumulation of intermediates on the catalyst surface and after 60 minutes it turned stable. Ni/Pd/AlOOH catalyst showed the highest steady-state activity in comparison with the Ni/Pd/SiO2 and Ni/Pd/Al2O3 catalysts. Their activity depends on the ozone decomposition potential of the catalysts because of generating oxidizing active species. The sample with the highest ozone decomposition ability which correlated to the surface area of the support oxidizes benzene to the highest extent.
Keywords: Ozone, catalysts, oxidation, Volatile organic compounds, VOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620573 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow
Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes
Abstract:
An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of 50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.
Keywords: Finned-tube heat exchangers, radiators, heat transfer correlations, pulsatile flow, computer radiators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368572 The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC
Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin
Abstract:
Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained.
Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410571 Information Gain Ratio Based Clustering for Investigation of Environmental Parameters Effects on Human Mental Performance
Authors: H. Mehdi, Kh. S. Karimov, A. A. Kavokin
Abstract:
Methods of clustering which were developed in the data mining theory can be successfully applied to the investigation of different kinds of dependencies between the conditions of environment and human activities. It is known, that environmental parameters such as temperature, relative humidity, atmospheric pressure and illumination have significant effects on the human mental performance. To investigate these parameters effect, data mining technique of clustering using entropy and Information Gain Ratio (IGR) K(Y/X) = (H(X)–H(Y/X))/H(Y) is used, where H(Y)=-ΣPi ln(Pi). This technique allows adjusting the boundaries of clusters. It is shown that the information gain ratio (IGR) grows monotonically and simultaneously with degree of connectivity between two variables. This approach has some preferences if compared, for example, with correlation analysis due to relatively smaller sensitivity to shape of functional dependencies. Variant of an algorithm to implement the proposed method with some analysis of above problem of environmental effects is also presented. It was shown that proposed method converges with finite number of steps.Keywords: Clustering, Correlation analysis, EnvironmentalParameters, Information Gain Ratio, Mental Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824570 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras
Abstract:
In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.
Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230569 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach
Authors: Saowaluck Ukrisdawithid
Abstract:
The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.
Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808568 Technique for Processing and Preservation of Human Amniotic Membrane for Ocular Surface Reconstruction
Authors: Irfan Z. Qureshi, Fareeha A., Wajid A. Khan
Abstract:
Human amniotic membrane (HAM) is a useful biological material for the reconstruction of damaged ocular surface. The processing and preservation of HAM is critical to prevent the patients undergoing amniotic membrane transplant (AMT) from cross infections. For HAM preparation human placenta is obtained after an elective cesarean delivery. Before collection, the donor is screened for seronegativity of HCV, Hbs Ag, HIV and Syphilis. After collection, placenta is washed in balanced salt solution (BSS) in sterile environment. Amniotic membrane is then separated from the placenta as well as chorion while keeping the preparation in BSS. Scrapping of HAM is then carried out manually until all the debris is removed and clear transparent membrane is acquired. Nitrocellulose membrane filters are then placed on the stromal side of HAM, cut around the edges with little membrane folded towards other side making it easy to separate during surgery. HAM is finally stored in solution of glycerine and Dulbecco-s Modified Eagle Medium (DMEM) in 1:1 ratio containing antibiotics. The capped borosil vials containing HAM are kept at -80°C until use. This vial is thawed to room temperature and opened under sterile operation theatre conditions at the time of surgery.Keywords: HAM, AMT, ocular transplant
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3548567 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator
Authors: Kriengkrai Assawamartbunlue, Channarong Wantha
Abstract:
This paper presents effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e., absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and be very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.
Keywords: Acoustic properties, Carnot’s efficiency, Interference of waves, Operating pressure, Optimal operating frequency, Stack performance, Standing Wave, Thermoacoustic refrigerator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780566 Influence of Active Packaging on the Shelf Life of Apple-Black Currant Marmalade Candies
Authors: Sandra Muizniece-Brasava, Lija Dukalska, Solvita Kampuse, Irisa Murniece, Martins Sabovics, IlonaDabina-Bicka, Emils Kozlinskis, Svetlana Sarvi
Abstract:
The research object was apple-black currant marmalade candies. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 100%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60 and paper bags were used. Influence of iron based oxygen absorber in sachets of 500 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of marmalade. Samples of 80±5 g were packaged in polymer pouches (110 mm x 110 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +20.0±1.0 °C. The physiochemical properties – weight losses, moisture content, hardness, aw, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 1st, 3rd , 5th, 8th, 11th and 15th weeks of storage.Keywords: Active packaging, marmalade candies, shelf life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370565 Flow Visualization of Angled Supersonic Jets into a Supersonic Cross Flow
Authors: Yan Shao, Jin Zhou, Lin Lai, Haiyan Wu, Jing Lei
Abstract:
This paper describes Nano-particle based Planar Laser Scattering (NPLS) flow visualization of angled supersonic jets into a supersonic cross flow based on the HYpersonic Low TEmperature (HYLTE) nozzle which was widely used in DF chemical laser. In order to investigate the non-reacting flowfield in the HYLTE nozzle, a testing section with windows was designed and manufactured. The impact of secondary fluids orifice separation on mixing was examined. For narrow separation of orifices, the secondary fuel penetration increased obviously compared to diluent injection, which means smaller separation of diluent and fuel orifices would enhance the mixing of fuel and oxidant. Secondary injections with angles of 30, 40 and 50 degrees were studied. It was found that the injectant penetration increased as the injection angle increased, while the interfacial surface area to entrain the freestream fluid is largest when the injection angle is 40 degree.Keywords: HYLTE nozzle, NPLS, supersonic mixing, transverse injection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842564 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS FLUENT 14.
Keywords: Turbulent flow, Double forward, Heat transfer, Separation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694563 Hydrolysis of Hull-Less Pumpkin Oil Cake Protein Isolate by Pepsin
Authors: Ivan Živanović, Žužana Vaštag, Senka Popović, Ljiljana Popović, Draginja Peričin
Abstract:
The present work represents an investigation of the hydrolysis of hull-less pumpkin (Cucurbita Pepo L.) oil cake protein isolate (PuOC PI) by pepsin. To examine the effectiveness and suitability of pepsin towards PuOC PI the kinetic parameters for pepsin on PuOC PI were determined and then, the hydrolysis process was studied using Response Surface Methodology (RSM). The hydrolysis was carried out at temperature of 30°C and pH 3.00. Time and initial enzyme/substrate ratio (E/S) at three levels were selected as the independent parameters. The degree of hydrolysis, DH, was mesuared after 20, 30 and 40 minutes, at initial E/S of 0.7, 1 and 1.3 mA/mg proteins. Since the proposed second-order polynomial model showed good fit with the experimental data (R2 = 0.9822), the obtained mathematical model could be used for monitoring the hydrolysis of PuOC PI by pepsin, under studied experimental conditions, varying the time and initial E/S. To achieve the highest value of DH (39.13 %), the obtained optimum conditions for time and initial E/S were 30 min and 1.024 mA/mg proteins.Keywords: Enzymatic hydrolysis, Pepsin, Pumpkin (CucurbitaPepo L.) oil cake protein isolate, Response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177562 Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River
Authors: P. Chihomvu, P. Stegmann, M. Pillay
Abstract:
Pollution of the Klip River has caused microorganisms inhabiting it to develop protective survival mechanisms. This study isolated and characterized the heavy metal resistant bacteria in the Klip River. Water and sediment samples were collected from six sites along the course of the river. The pH, turbidity, salinity, temperature and dissolved oxygen were measured in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb and Zn) of the water samples were determined by atomic absorption spectroscopy. Biochemical and antibiotic profiles of the isolates were assessed using the API 20E® and Kirby Bauer Method. Growth studies were carried out using spectrophotometric methods. The isolates were identified using 16SrDNA sequencing. The uppermost part of the Klip River with the lowest pH had the highest levels of heavy metals. Turbidity, salinity and specific conductivity increased measurably at Site 4 (Henley on Klip Weir). MIC tests showed that 16 isolates exhibited high iron and lead resistance. Antibiotic susceptibility tests revealed that the isolates exhibited multitolerances to drugs such as Tetracycline, Ampicillin, and Amoxicillin.
Keywords: Klip River, heavy metals, resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3998561 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks
Authors: Maya S. Rathod, Bahadur Singh Hathan
Abstract:
Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, antioxidant activity, total phenolic content, and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100g premix having 16.8% moisture content (w.b).Keywords: Extrusion, mustard leaves powder, optimization, response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173560 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437559 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process
Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul
Abstract:
The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.Keywords: Work-roll cooling system, hot strip process adjustment, feasibility study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955558 Characterization of Corn Cobs from Microwave and Potassium Hydroxide Pretreatment
Authors: Boonyisa Wanitwattanarumlug, Apanee Luengnaruemitchai, Sujitra Wongkasemjit
Abstract:
The complexity of lignocellulosic biomass requires a pretreatment step to improve the yield of fermentable sugars. The efficient pretreatment of corn cobs using microwave and potassium hydroxide and enzymatic hydrolysis was investigated. The objective of this work was to characterize the optimal condition of pretreatment of corn cobs using microwave and potassium hydroxide enhance enzymatic hydrolysis. Corn cobs were submerged in different potassium hydroxide concentration at varies temperature and resident time. The pretreated corn cobs were hydrolyzed to produce the reducing sugar for analysis. The morphology and microstructure of samples were investigated by Thermal gravimetric analysis (TGA, scanning electron microscope (SEM), X-ray diffraction (XRD). The results showed that lignin and hemicellulose were removed by microwave/potassium hydroxide pretreatment. The crystallinity of the pretreated corn cobs was higher than the untreated. This method was compared with autoclave and conventional heating method. The results indicated that microwave-alkali treatment was an efficient way to improve the enzymatic hydrolysis rate by increasing its accessibility hydrolysis enzymes.Keywords: Corn cobs, Enzymatic hydrolysis, Microwave, Potassium hydroxide, Pretreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284557 Negative Pressure Waves in Hydraulic Systems
Authors: Fuad H. Veliev
Abstract:
Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.
Keywords: Liquid systems, negative pressure, temperature, wave, metastable state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696556 Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution
Authors: Rouhollah Ahmadi, Tatsuya Ueno, Tomio Okawa
Abstract:
Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value.Keywords: Subcooled flow boiling, Bubble dynamics, Void fraction, Sliding bubble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043555 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385