Search results for: mobile-assisted language learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2680

Search results for: mobile-assisted language learning

580 Data Security in a DApp Twitter Alike on Web 3.0 With Blockchain Based Technology

Authors: Vishal Awasthi, Tanya Soni, Vigya Awasthi, Swati Singh, Shivali Verma

Abstract:

There is a growing demand for a network that grants a high level of data security and confidentiality. For this reason, the semantic web was introduced, which allows data to be shared and reused across applications while safeguarding users privacy and user’s will grab back control of their data. The earlier Web 1.0 and Web 2.0 versions were built on client-server architecture, in  which there was the risk of data theft and unconsented sale of user data. A decentralized version, Known as Web 3.0, that is mostly built on blockchain technology was interjected to resolve these issues. The recent research focuses on blockchain technology, deals with privacy, security, transparency, and innovation of decentralized applications (DApps), e.g. a Twitter Clone, Whatsapp clone. In this paper the Twitter Alike built on the Ethereum blockchain will replace traditional techniques with improved latency, throughput, and data ownership. The central principle of this DApp is smart contract implemented using Solidity which is an object- oriented and highlevel language. Consequently, this will provide a better Quality Services, high data security, and integrity for both present and future internet technologies.

Keywords: Blockchain, DApps, Ethereum, Semantic Web, Smart Contract, Solidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 327
579 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study

Authors: Chee Peng Lim, Wei Yee Goh

Abstract:

In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.

Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
578 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters

Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva

Abstract:

The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.

Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
577 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
576 A Web-Based Mobile System for Promoting Agribusiness in Northern Nigeria

Authors: I. M. Mungadi, M. S. Argungu, N. I. Mahmud

Abstract:

This research aimed at developing a web-based mobile system and figuring out a better understanding of how could “web-based mobile system supports farmers in Kebbi State”. Thus, by finding out the answers to the research questions, a conceptual framework of the entire system was implemented using Unified Modelling Language (UML). The work involved a review of existing research on web-based mobile technology for farmers in some countries and other geographical areas within Nigeria. This research explored how farmers in Northern Nigeria, especially in Kebbi state, make use of the web-based mobile system for agribusiness. Also, the benefits of using web-based mobile systems and the challenges farmers face using such systems were examined. Considering the dynamic nature of theory of information and communication technology; this research employed survey and focus group discussion (FGD) methods. Stratified, random, purposive, and convenience sampling techniques were adopted to select the sample. A questionnaire and FGD guide were used to collect data. The survey finds that most of the Kebbi state farms use their alternative medium to get relevant information for their agribusiness. Also, the research reveals that using a web-based mobile system can benefit farmers significantly. Finally, the study has successfully developed and implemented the proposed system using mobile technology in addition to the framework design.

Keywords: Agribusiness, farmers, Kebbi State, mobile technology, Northern Nigeria, web-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581
575 Motivational Factors Influencing Women’s Entrepreneurship: A Case Study of Female Entrepreneurship in South Africa

Authors: Natanya Meyer, Johann Landsberg

Abstract:

Globally, many women are still disadvantaged when it comes to business opportunities. Entrepreneurship development programs, specifically designed to assist women entrepreneurs, are assisting in solving this problem to a certain extent. The purpose of this study is to identify the factors that motivate females to start their own business. Females, from three different groups (2013, 2014 and 2015), who were all enrolled in a short learning program specifically designed for women in early start-up stage or intending to start a business, were asked what motivated them to start a business. The results indicated that, from all three groups, the majority of the women wanted to start a business to be independent and have freedom and to add towards a social goal. The results further indicated that in general, women would enter into entrepreneurship activity due to pull factors rather than push factors.

Keywords: Entrepreneurship programs, South Africa, female entrepreneurship, motivational factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3923
574 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
573 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
572 An Artificial Immune System for a Multi Agent Robotics System

Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair

Abstract:

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
571 Evolutionary Program Based Approach for Manipulator Grasping Color Objects

Authors: Y. Harold Robinson, M. Rajaram, Honey Raju

Abstract:

Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.

Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
570 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7977
569 An Electronic and Performance Test for the Applicants to Faculty of Education for Early Childhood in Egypt for Measuring the Skills of Teacher Students

Authors: Ahmed Amin Mousa, Gehan Azam

Abstract:

The current study presents an electronic test to measure teaching skills. This test is a part of the admission system of the Faculty of Education for Early Childhood, Cairo University. The test has been prepared to evaluate university students who apply for admission the Faculty. It measures some social and physiological skills which are important for successful teachers, such as emotional adjustment and problem solving; moreover, the extent of their love for children and their capability to interact with them. The test has been approved by 13 experts. Finally, it has been introduced to 1,100 students during the admission system of the academic year 2016/2017. The results showed that most of the applicants have an auditory learning style. In addition, 97% of them have the minimum requirement skills for teaching children.

Keywords: Electronic test, early childhood, skills, teacher student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
568 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
567 Renewable Energies in Spain and Portugal: A Strategic Challenge for the Sustainability

Authors: María Teresa García-Álvarez, Isabel Soares, Rosa María Mariz-Pérez

Abstract:

Directive 2009/28/CE establishes, as obligatory objective, a share of renewable energies on energetic consumption of 20%, in European Union, in 2020 However, such European normative gives freedom to member states in the selection of the renewable promotion mechanism that allows them to obtain that objective. In this paper, we analyze the main characteristics of the promotion mechanisms of renewable energy used in the countries that shape the Electricity Iberian Market (Spain and Portugal) and the results in employment. The importance of these countries is given by the great increasing of the renewable energies which suppose a share higher than 30% of the overall generation in 2010. Therefore, this research paper can serve as the basis for the learning of other countries with regard to the main advantages that entail the use of a feed-in tariff system.

Keywords: Employment, Energy policy, Professional profiles, Renewable energies, Professional profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
566 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies

Authors: Ali Nouri

Abstract:

Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.

Keywords: Neuroeducation studies, neuroeducational theory, theory building, neuroeducation research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
565 Reference Architecture for Intelligent Enterprise Solutions

Authors: Shankar Kambhampaty, Harish Rohan Kambhampaty

Abstract:

Data in IT systems in enterprises have been growing at phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several Artificial Intelligence/Machine Learning (AI/ML) and Business Intelligence (BI) tools and technologies available in marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information and intelligence components and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.

Keywords: Architecture, model, intelligence, artificial intelligence, business intelligence, AI, BI, ML, analytics, enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
564 Measuring Teachers- Beliefs about Mathematics: A Fuzzy Set Approach

Authors: M.A. Lazim, M.T.Abu Osman

Abstract:

This paper deals with the application of a fuzzy set in measuring teachers- beliefs about mathematics. The vagueness of beliefs was transformed into standard mathematical values using a fuzzy preferences model. The study employed a fuzzy approach questionnaire which consists of six attributes for measuring mathematics teachers- beliefs about mathematics. The fuzzy conjoint analysis approach based on fuzzy set theory was used to analyze the data from twenty three mathematics teachers from four secondary schools in Terengganu, Malaysia. Teachers- beliefs were recorded in form of degrees of similarity and its levels of agreement. The attribute 'Drills and practice is one of the best ways of learning mathematics' scored the highest degree of similarity at 0. 79860 with level of 'strongly agree'. The results showed that the teachers- beliefs about mathematics were varied. This is shown by different levels of agreement and degrees of similarity of the measured attributes.

Keywords: belief, membership function, degree of similarity, conjoint analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
563 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: Demand forecasting, machine learning, risk management, supply chain design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
562 Alertness States Classification By SOM and LVQ Neural Networks

Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre

Abstract:

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
561 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
560 Nuclear Safety and Security in France in the 1970s: A Turning Point for the Media

Authors: Jandot Aurélia

Abstract:

In France, in the main media, the concern about nuclear safety and security has not really appeared before the beginning of the 1970s. The gradual changes in its perception are studied here through the arguments given in the main French news magazines, linked with several parameters. As this represents a considerable amount of copies and thus of information, are selected here the main articles as well as the main “mental images” aiming to persuade the readers and which have led the public awareness to evolve. Indeed, in the 1970s, in France, these evolutions were not made in one day. Indeed, over the period, many articles were still in favor of nuclear power plants and promoted the technological advances that were made in this field. They had to be taken into account. But, gradually, grew up arguments and mental images discrediting the perception of nuclear technology. Among these were the environmental impacts of this industry, as the question of pollution progressively appeared. So, between 1970 and 1979, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the editorial staffs of the French news magazines. This is all these changes that are emphasized here, over a period when the safety and security concern linked to the nuclear technology, to there a field for specialists, has become progressively a social issue seemingly open to all.

Keywords: French media discourse, nuclear safety and security, public awareness, persuasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
559 Interoperability and Performance Analysis of IEC61850 Based Substation Protection System

Authors: Ming-Ta Yang, Jyh-Cherng Gu, Po-Chun Lin, Yen-Lin Huang, Chun-Wei Huang, Jin-Lung Guan

Abstract:

Since IEC61850 substation communication standard represents the trend to develop new generations of Substation Automation System (SAS), many IED manufacturers pursue this technique and apply for KEMA. In order to put on the market to meet customer demand as fast as possible, manufacturers often apply their products only for basic environment standard certification but claim to conform to IEC61850 certification. Since verification institutes generally perform verification tests only on specific IEDs of the manufacturers, the interoperability between all certified IEDs cannot be guaranteed. Therefore the interoperability between IEDs from different manufacturers needs to be tested. Based upon the above reasons, this study applies the definitions of the information models, communication service, GOOSE functionality and Substation Configuration Language (SCL) of the IEC61850 to build the concept of communication protocols, and build the test environment. The procedures of the test of the data collection and exchange of the P2P communication mode and Client / Server communication mode in IEC61850 are outlined as follows. First, test the IED GOOSE messages communication capability from different manufacturers. Second, collect IED data from each IED with SCADA system and use HMI to display the SCADA platform. Finally, problems generally encountered in the test procedure are summarized.

Keywords: GOOSE, IEC61850, IED, SCADA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5367
558 Conceptual Multidimensional Model

Authors: Manpreet Singh, Parvinder Singh, Suman

Abstract:

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

Keywords: Multidimensional, data precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
557 The Impact of Dialectal Differences on the Perception of Japanese Gemination: A Case Study of Cantonese Learners

Authors: Honghao Ren, Mariko Kondo

Abstract:

This study investigates the perceptual features of Japanese obstruent geminates among Chinese learners of Japanese, focusing on the dialectal effect of the checked-tone, a syllable that ends in a stop consonant or a glottal stop, which is similar to Japanese obstruent geminates phonetically. In this study, 41 native speakers of Cantonese are divided into two groups based on their proficiency as well as learning period of Japanese. All stimuli employed in this study are made into C[p,k,s]+V[a,e,i] structure such as /apa/, /eke/, /isi/. Both original sounds and synthesized sounds are used in three different parts of this study. The results of the present study show that the checked-tone does have the positive effect on the perception of Japanese gemination. Furthermore, the proportion of closure duration in the entire word would be a more reliable and appropriate criterion in testing this kind of task.

Keywords: Dialectal differences, Cantonese learners of Japanese, acoustic experiment, closure duration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
556 Effect of Shared Competences in Industrial Districts on Knowledge Creation and Absorptive Capacity

Authors: César Camisón-Zornoza, Beatriz Forés-Julián, Alba Puig-Denia

Abstract:

The literature has argued that firms based in industrial districts enjoy advantages for creating internal knowledge and absorbing external knowledge as a consequence of to the knowledge flows and spillovers that exist in the district. However, empirical evidence to show how belonging to an industrial district affects the business processes of creation and absorption of knowledge is scarce and, moreover, empirical research has not taken into account the influence of variations in the flows of knowledge circulating in each cluster. This study aims to extend empirical evidence on the effect that the stock of shared competencies in industrial districts has on the business processes of creation and absorption of knowledge, through data from an initial study on 952 firms and 35 industrial districts in Spain.

Keywords: Absorptive capacity, industrial district, knowledge creation, organisational learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
555 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
554 Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot

Authors: G. Shanmugasundar, R. Sivaramakrishnan, S. Venugopal

Abstract:

Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.

Keywords: Robot kinematics, screw jack mechanisms, Denavit-Hartenberg approach, universal joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
553 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation

Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed

Abstract:

The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.

Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
552 Knowledge Management (KM) Practices - A Study of KM Adoption among Doctors in Kuwait

Authors: B. Alajmi, L. Marouf, A. S. Chaudhry

Abstract:

Knowledge management is considered as an important factor in improving health care services. KM facilitates the transfer of existing knowledge and the development of new knowledge in hospitals. This paper reviews practices adopted by doctors in Kuwait for capturing, sharing, and generating knowledge. It also discusses the perceived impact of KM practices on performance of hospitals. Based on a survey of 277 doctors, the study found that KM practices among doctors in the sampled hospitals were not very effective. Little attention was paid to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, good km practices were perceived by doctors to have a positive impact on performance of hospitals. It was concluded that through effective KM practices hospitals could improve the services they provide. Documentation of best practices and capturing of lessons learnt for re-use of knowledge could help transform the hospitals into learning organizations.

Keywords: Health Sector, Hospitals, Knowledge Management, Kuwait, Tools and Practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524
551 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, Bifurcation analysis, neuron modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204