
 

 

 
Abstract—The data is available in abundance in any business 

organization. It includes the records for finance, maintenance, 
inventory, progress reports etc. As the time progresses, the data keep 
on accumulating and the challenge is to extract the information from 
this data bank. Knowledge discovery from these large and complex 
databases is the key problem of this era. Data mining and machine 
learning techniques are needed which can scale to the size of the 
problems and can be customized to the application of business. For 
the development of accurate and required information for particular 
problem, business analyst needs to develop multidimensional models 
which give the reliable information so that they can take right 
decision for particular problem. If the multidimensional model does 
not possess the advance features, the accuracy cannot be expected. 
The present work involves the development of a Multidimensional 
data model incorporating advance features. The criterion of 
computation is based on the data precision and to include slowly 
change time dimension. The final results are displayed in graphical 
form. 
 

Keywords—Multidimensional, data precision.  
 

I. MULTIDIMENSIONAL DATA MODEL 

HE data involved in any business organization can be 
labeled as a  as shown in Fig. 1. Any point inside the cube 

is at the intersection of the coordinates defined by the edges of  
 

 
Fig. 1 Three dimensional model of a business 

 
Manuscript received October 9, 2001.  
Manpreet Singh is with the Department of CSE & IT, Guru Nanak Dev 

Engineering College, Ludhiana, India (e-mail: mpreet78@yahoo.com).  
Parvinder Singh is with Department of CSE, Rayat and Bahara Institute of 

Engineering and Technology, Ropar, India (e-mail: author@lamar. 
colostate.edu). 

Suman is with Department of Computer Engineering, Dronacharya College 
of Engineering, Gurgaon – 122001, India (e-mail: 
suman_aggroia@yahoo.com). 

the cube. For the business described above, the edges of the 
cube are Product, Market, and Time. Most people can quickly 
understand and imagine that the points inside the cube are 
where the measurements of the business for that combination 
of Product, Market, and Time are stored. 

A data cube in data warehousing is not necessarily a three-
dimensional (3-D) geometric structure, but is essentially N 
dimensional (N-D). The edges of the cube are called 
dimensions, which are the perspectives or entities with respect 
to which an organization wants to keep records. Each 
dimension may be associated with a dimension table, which 
describes the dimension. 

For example, a dimension table for Product may contain 
such attributes as product Key, description, brand, category, 
etc., which can be specified by managers or data analysts. For 
those dimensions that are non-categorical, such as Time, the 
data warehouse system should be able to automatically 
generate the corresponding dimension table based on the data 
distribution. As a side note, the Time dimension is in fact of 
particular significance to decision support for trend analysis. 
Often it is desirable to have some built-in knowledge of 
calendars and other aspects of the time dimension. 

In addition, a data cube in data warehousing is mainly 
constructed to measure the company's performance. Thus, a 
typical multidimensional data model is organized around a 
theme, which is represented by a fact table of some numerical 
measures — the objects of analysis. For example, a fact table 
may contain sales, budget, revenue, inventory, number of 
items sold etc. Each of the numerical measures depends on a 
set of dimensions, which provide the context for that measure. 
Therefore, the dimensions together are assumed to uniquely 
determine the measure, which is a value in the 
multidimensional space of dimensions. 

Dimensions are hierarchical by nature. For example, 
dimension Time can be described by the attributes Year, 
Quarter, Month, and Day. Alternatively, the attributes of a 
dimension may be organized into a lattice, which indicates a 
partial order for the dimension. That is, the same Time 
dimension can have Year, Quarter, Month, Week, and Day 
instead. With this scheme, the Time dimension is no longer a 
hierarchy because some weeks in the year may belong to 
different months. 

Therefore, if each dimension contains multiple levels of 
abstraction, the data can be viewed from different perspectives 
flexibly. A number of typical data cube operations: 
A. Roll-up (increasing the level of abstraction)  
B. Drill-down (decreasing the level of abstraction or 
increasing detail) 
C. Slice and dice (selection and projection) and  

Conceptual Multidimensional Model 
Manpreet Singh, Parvinder Singh, and Suman 

T 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3841International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f



 

 

D. Pivot (re-orienting the multidimensional view of data), 
exist to allow interactive querying and analysis of the data at 
hand. These operations are known as On-Line Analytic 
Processing (OLAP). 

Decision makers would like to ask questions like "compute 
and rank the total sales by each country (or by each year)". 
They would also like to compare two numerical measures 
such as sales and budget aggregated by the same dimensions. 
Thus, another distinctive feature of the multidimensional data 
model is its stress on aggregation of numerical measures by 
one or more dimensions, which is one of the key operations 
mainly to speed up query processing time. 

II. FEATURES OF MULTIDIMENSIONAL DATA MODEL 
A. Explicit Hierarchies in Dimensions 
The hierarchies in dimension should be captured explicitly 

by schema. This permits the user to drill-down and roll-up. In 
example, the hierarchies address<city<country should be 
captured. 

B. Symmetric Treatment of Dimension and Measures 
The data model should allow measures to be treated as 

dimensions and vice versa. For example the attribute age for 
product would be treated as a measure, to allow for 
computations such as average age, etc., but this should be able 
to define Age dimensions which allow to group the product 
into age groups. 

C. Multiple Hierarchies in Each Dimension 
A single dimension can have several paths for aggregating 

data. As an example, assume that there is time dimension on 
the date of purchase attribute. Days roll up to weeks and to 
months, but weeks do not roll up to year. To model this, 
multiple hierarchies in each dimension are needed.  

D.  Support for Aggregation Semantics 
The data model should capture the aggregation semantics of 

the data, closely related to summarizability, and use this to 
provide a “safety net” that catches queries that might give 
results that have no meaning to the user. Aspect of this include 
built in support for avoiding double-counting of data and 
avoiding addition of non-additive data [7]. 

For example, when asking for the number of customer in 
different product groups, this should only count the same 
customer once per group, even though that customer may have 
several products in a group. The user should also be able to 
specify which aggregations are considered meaningful for the 
different kind of data available, and the model should provide a 
foundation for enforcing these specifications. As an 
illustration, it may not be meaningful to add inventory level 
together, but performing average calculation on them does 
make sense. In the field of statistical database, a closely related 
concept is summarizability which means that an aggregate 
result, e.g., total sales, can be computed by directly combining 
results from lower level aggregation, e.g., the sales for each 
store. 

E.  Non-Strict Hierarchies 
The hierarchies in a dimension are always not strict, i.e. this 

can have many-to-many relationships between the different 
level in a dimension. In example, hierarchies are not strict. 
The data model should be able to handle these just as well as 
“ordinary” strict dimensions. 

F. Non-Onto Hierarchies 
Often, the hierarchies in a dimension are not balanced i.e. 

the path from the root to the leaves has varying length. 

G. Non Covering Hierarchies 
Another common feature of real world hierarchies is that 

links between two nodes in the hierarchies “skip” one or more 
levels. For example, the address “305 Rural Road” in the 
residence hierarchies is mapped directly to the country, 
bypassing the city level. 

H. Many to many Relationships between Facts and 
Dimension 

The relationships between facts and dimension are not 
always the classical many-to-one. 

İ. Handling Change and Time 
Although data change over time, it should be possible to 

perform meaningful analysis across time when data change. 
For example one product can be superseded by two new ones, 
but customers are still treated with old one. It should be 
possible to easily combine data across changes. The problem 
is referred to as handling slowly changing dimensions as part 
of this problem. 

J. Handling Different Levels of Granularity 
   Fact data might be registered at different granularities. For 
example, the customer of a product may be registered 
differently by different experts. Some will use a very specific 
customer while others may use the less precise which cover 
several low level customer. It should still be possible to get 
correct analysis results when data is registered at different 
granularities . 

K. Handling Imprecision 
   Finally, it is very common to be able to capture directly the 
imprecision in the data and allow queries to take into account. 
For example the customer has varying precision and it is 
important that this is captured and communicated to the user. 
 

III. HANDLING IMPRECISION 
Alternative queries may be used when the data is not 

precise enough to answer queries precisely, i.e., when the data 
used to group on is registered at granularities coarser than the 
“grouping” categories. 

A. Overview of Approach 
Along with the model definition, here presented how the 

case study would be handled in the model. This also showed 
how imprecision could be handled, namely by mapping facts 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3842International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f



 

 

to dimension values of coarser granularities when the 
information was imprecise. An illustration of the approach, 
showing how the possible spectrum of imprecision in the data 
is captured using categories in a dimension, is seen in Fig. 2. 

The approach has a nice property, provided directly by the 
dimensional “imprecision” hierarchy described above. When 
the data is precise enough to answer a query, the answer is 
obtained straight away, even though the underlying facts may 
have varying granularities. The general approach to handling a 
query starts by testing if the data is precise enough to answer 
the query, in which case the query can be answered directly. 
Otherwise, an alternative query is suggested. In the alternative 
query, the categories used for grouping are coarsened exactly 
so much that the data is precise enough to answer the 
(alternative) query. Thus, the alternative query will give the 
most detailed precise answer possible, considering the 
imprecision in the data. Examining our algebra, we see that 
imprecision in the data will only affect the result of two 
operators, namely selection and aggregate formation (the join 
operator tests only for equality on fact identities, which are 
not subject to imprecision). Thus, this need only handle 
imprecision directly for these two operators; the other 
operators will just “pass on” the results containing imprecision 
untouched. However, if this can handle imprecision in the 
grouping of facts, ordinary OLAP style “slicing/dicing” 
selection is also handled straightforwardly, as slicing/dicing is 
just selection of data for one of a set of groups. 

 
Fig. 2 The Spectrum of Imprecision 

 

Following this reasoning, the general query that must be 
considered is: 
α [C1 ………..Cn, Dn+1, g](M), where M is an n-dimensional 
MO, C1 ……….Cn are the “grouping” categories, Dn+1  is the 
result dimension, and g  is the aggregation function. The 
evaluation of the query proceeds (logically) as follows. First, 

facts are grouped according to the dimension values in the 
categories C1….Cn   that characterizes them. Second, the 
aggregate function g is applied to the facts in each group, 
yielding an “aggregate result” dimension value in the result 
dimension for each group. The evaluation approach is given 
by the pseudo-code below. The text after the “//” sign are 
comments. 
Procedure EvalImprecise (Q, M)                //Q is a query is an 
MO. 
If  PreciseEnough (Q, M) then Eval (Q, M) //if data is precise 
enough, use normal evaluation 
Else 
O’= Alternate (Q, M)                                   //Suggest alternate 
query 
If Q’ is accepted then Eval (Q’, M)       //use normal 
evaluation 
for alternate query 
else 
Handle Imprecision in Grouping for Q 
Handle Imprecision in Aggregate Computation for Q 
Return imprecision in Aggregate Computation for Q  
Return Imprecise Result of Q 
   end if 
   end if  

         
 Here overall approach to handling the imprecision in all 

phases will be to use the granularity of the data, or measures 
thereof, to represent the imprecision in the data. This allows 
for simple and efficient handling of imprecision [8].  

A. Alternative Queries 
The first step in the evaluation of a query is to test whether 

the underlying data is precise enough to answer the query. 
This means that all facts in the MO must be linked to 
categories that are less-than-or-equal” to the “grouping” 
categories in the query. 

In order to perform the test for data precision, there need to 
know the granularities of the data in the different dimensions. 
For this, for each MO, M, this maintains a separate precision 
MO, Mp. The precision MO has the same number of 
dimensions as the original MO. For each dimension in the 
original MO, the precision MO has a corresponding 
“granularity” dimension. The i’th granularity dimension has 

only two categories, Granularityi   and   ┬pi. There is one 
value in a “Granularity” category for each category in the 
corresponding dimension in M. The set of facts F is the same 
as in M, and the fact-dimension relations for Mp map a fact f 
to the dimension value corresponding to the category that f 
was mapped to in M. The determination of whether a given 
query can be answered precisely is dependent on the actual 
data in the MO, and can change when the data in the MO is 
changed. Thus, this need to update the precision MO along 
with the original MO when data changes. 

Formally, given an MO, M= (S, F, D, R), where:  

S = ( ),, DF  D  = { },.....1, niTi =  

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3843International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f



 

 

Ti = (Ci, }.......1,{},{), niDiDCijCiTi ===≤ and Rp 
= (Rpi,i= 1……n) we define the  
 
precision MO,Mp, as: 
 
                         Mp = (Sp ,Fp ,Dp  ,Rp), 
where 
 
Sp = (Fp, Dp), Fp = F, Dp = {Tpi, I = 1… n},  
 
Tpi = {Granularityi, Tpi}, 
 
Fp = F, Dp = {Dpi, 1=1… n},  
Dpi = (Cpi, ≤ pi), Cpi = {Granularityi, Tpi}, 
Granularityi = {GDi (e)| e ∈Di}, Tpi = {Ti), and 
e1 ≤  pi e2 ⇔  (e1 = e2)∨    (e1 ∈  Granularityi∧   e2 = Ti, and  
Rpi = {(f, GDi (e))| (f, e) ∈ Ri}       

The test to see if the data is precise enough to answer a query 
ü can be performed by rewriting Q = α [C1……Cn, 
Dn+1,g](M) to a “testing” query Qp = α [G1……..Gn,Gn+1 
Set Count]  where Gi' is the corresponding “granularity” 

component in   Dpi if Ci ≠┬i   Otherwise, Gi = ┬i . Thus, 
we group only on the granularity components corresponding 
to the components that the expert has chosen to group on.  

IV. HANDLING TIME/SLOWLY CHANGING DIMENSIONS 
Dimensions that change over time are called Slowly 

Changing Dimensions. For instance, a product price changes 
over time; People change their names for some reason; 
Country and State names may change over time. These are a 
few examples of Slowly Changing Dimensions since some 
changes are happening to them over a period of time. 

Slowly Changing Dimensions are often categorized into 
three types namely Type1, Type2 and Type3 as explained in 
figure: 

 

 
 

Fig. 3 Time Handling 

The following section deals with how to capture and 
handling these changes over time.  

The "Product" table mentioned below contains a product 
named, Product1 with Product ID being the primary key. In 
the year 2004, the price of Product1 was $150 and over the 
time, Product1's price changes from $150 to $350. With this 
information, let us explain the three types of Slowly Changing 
Dimensions. 

 
TABLE I 

PRODUCT PRICE IN 2004 
Product ID(PK) Year Product name Product price 

1 2004 Product1 $150 
 

A. Type 1(Overwriting the Old Values) 
In the year 2005, if the price of the product changes to 

$250, then the old values of the columns "Year" and "Product 
Price" have to be updated and replaced with the new values. 
In this Type 1, there is no way to find out the old value of the 
product "Product1" in year 2004 since the table now contains 
only the new price and year information. 

 
TABLE II 

PRODUCT PRICE IN 2005 
Product ID(PK) Year Product Name Product price 

1 2005 Product1 $250 

 

B. Type 2 (Creating another Additional Record) 
In this case, the old values will not be replaced but a new 

row containing the new values will be added to the product 
table. So at any point of time, the difference between the old 
values and new values can be retrieved and easily be 
compared. This would be very useful for reporting purposes. 

 
TABLE III 

PRODUCT PRICE FOR 2004 AND 2005 
Product 
ID(PK) 

Year Product name Product price 

1 2004 Product1 $150 

1 2005 Product1 $250 

 
The problem with the above mentioned data structure is 

"Product ID" cannot store duplicate values of "Product1" 
since "Product ID" is the primary key. Also, the current data 
structure doesn't clearly specify the effective date and expiry 
date of Product1 like when the change to its price happened. 
So, it would be better to change the current data structure to 
overcome the above primary key violation. 

 
 
 
 
 
 
 
 
 
 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3844International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f



 

 

TABLE IV 
PRODUCT TABLE WITH DATE AND TIME 

Product 

ID(PK) 

Effective Date 

Time(PK) 
Year 

Product 

name 

Product 

Price 

Expiry 

Date 

Time 

 

1 

01-01-

200412.00A

M 

2004 Product1 $150 

12-31-

2004 

11.59PM 

 

1 

 

01-01-2005 

12.00AM 

2005 Product1 $250 

 

 

In the changed Product table's Data structure, "Product ID" 
and "Effective Date Time" are composite primary keys. So 
there would be no violation of primary key constraint. 
Addition of new columns, "Effective DateTime" and "Expiry 
DateTime" provides the information about the product's 
effective date and expiry date which adds more clarity and 
enhances the scope of this table. Type2 approach may need 
additional space in the data base, since for every changed 
record, an additional row has to be stored. Since dimensions 
are not that big in the real world, additional space is 
negligible. 

C. Type 3 (Creating New Fields) 
In this case, the latest update to the changed values can be 

seen. Example mentioned below illustrates how to add new 
columns and keep track of the changes. From that, Here able 
to see the current price and the previous price of the product: 
Product1.  

 
The problem with the Type 3 approach is over years, if the 

product price continuously changes, then the complete history 
may not be stored, only the latest change will be stored. For 
example, in year 2006, if the product 1's price changes to 
$350, then we would not be able to see the complete history of 
2004 prices, since the old values would have been updated 
with 2005 product information. 

 
TABLE VI 

PRODUCT HISTORY FOR 2006 

Product 
ID(PK) Year Product 

Name 
Product 

Price 

Old 
Product 

Price 

Old 
Year 

1 2006 Product1 $350 $250 2005 

 
 

V. RESULTS AND DISCUSSION 
Motivated by the popularity of On-Line Analytical 

Processing (OLAP) systems for analyzing business data, 
multidimensional data models have become a major database 
research area. However, current models do not handle well the 
complex data found in some real-world systems. This present 
a real-world case study from the retail business, where this 
track customer product their names, social security numbers, 
dates of birth, ages, and places of residence. The average is 
chosen to suit the purpose of giving a rough “measure of 
inclusion.” justifies requirements that a multidimensional data 
model must satisfy in order to support the complex data found 
in real-world applications. Requirements not handled by 
current models include data precision and slowly changing 
time dimension, twelve previously proposed data models are 
evaluated according to the requirements, and it is shown that 
none of them satisfies more than four requirements fully or 
partially. A new, extended multidimensional data model is 
purposed, which addresses two major requirements. The data 
model improves over previously proposed models by 
supporting precision and slowly changing time dimension. 
Especially, time is handled by adding valid time and 
transaction time to the basic model. Here propose algebra on 
the multidimensional objects from the model, and this show 
that it is closed and at least as strong as relational algebra with 
aggregation functions. The results are realized by the chart in 
Fig. 4 which tells the difference in existing model and 
proposed model.  

 

Revenue for year 2005 without applying 
technique 

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$3,500,000

New
 York

Hou
sto

n

Los 
Angel

es

San
 Fran

cis
co

Aust
in

Chica
go

Wash
ingto

n
Bosto

n
Dall

as

city versus sales
revenue

 

TABLE V 
PRODUCT HISTORY FOR 2005 

Product 
ID (pk) 

Current 
year 

Product 
name 

Current 
product price 

Old 
product 

price 

Old 
year 

 
1 

 
2005 

 
Product1 

 
$250 

 
$150 

 
2004 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3845International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f



 

 

Revenue for year 2005 with data 
precision

$0

$500,000

$1,000,000

$1,500,000

$2,000,000
$2,500,000

$3,000,000

$3,500,000

$4,000,000

$4,500,000

New
 York

Hou
sto

n

Lo
s A

ng
ele

s

San
 Fr

an
cis

co
Aus

tin

Chic
ag

o

Was
hin

gto
n

Bos
ton

Dall
as

 

Fig. 4 Revenue as shown by the System 
 

REFERENCES   
[1] P. Adriaans and D. Zantinge “Data Mining”, Pearson Education, USA, 

2002, pp. 1-200. 
[2] Alexandros Karakasidis “ETL queues for active data warehousing” 

Sixth   International Conference on Extending Database Technology, 
USA, 2005, pp. 153–165. 

[3] A. L. P. Chen, J-S. Chiu and F. S. C. Tseng, “Evaluating Aggregate 
Operations over imprecise Data”, IEEE Transactions on Knowledge 
and Data Engineering, Vol8, 1996, pp.273–284. 

[4] C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, X. S. Wang,         
“A Glossary of Time granularity Concepts”, In Temporal Databases: 
Research and Practice, 1998, pp. 406–413. 

[5] C. Li and X. S. Wang, “A Data Model for Supporting On-Line 
Analytical Processing” Fifth International Conference on Information 
and Knowledge Management, 1996, pp. 81–88. 

[6] Chang-Sub Park, young Ho Kim, Yoon-Joon Lee, “Rewriting OLAP 
Queries using Materialized Views and Dimension Hierarchies in Data 
warehouses” IEEE, 2001, pp. 515-523. 

[7] Daniel A. Keim, Hans-Peter Kriegel, “Visualization technique for 
Mining Large databases: A Comparison”, IEEE Transaction on 
Knowledge and Data Engineering,Vol 8., 1996, pp.923-938.  

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:12, 2007 

3846International Scholarly and Scientific Research & Innovation 1(12) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

12
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

84
3.

pd
f




