Search results for: spatial optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2522

Search results for: spatial optimization.

2342 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2341 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes

Authors: Radhwan Yousif Sedik Al-Jawadi

Abstract:

Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.

Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2340 Spatio-Temporal Analysis and Mapping of Malaria in Thailand

Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit

Abstract:

This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.

Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
2339 An Experiment of Three-Dimensional Point Clouds Using GoPro

Authors: Jong-hwa Kim, Mu-wook Pyeon, Yang-dam Eo, Ill-woong Jang

Abstract:

Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map.

Keywords: GoPro, SIFT, DLT, Point Clouds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
2338 A New Method for Multiobjective Optimization Based on Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

The necessity of solving multi dimensional complicated scientific problems beside the necessity of several objective functions optimization are the most motive reason of born of artificial intelligence and heuristic methods. In this paper, we introduce a new method for multiobjective optimization based on learning automata. In the proposed method, search space divides into separate hyper-cubes and each cube is considered as an action. After gathering of all objective functions with separate weights, the cumulative function is considered as the fitness function. By the application of all the cubes to the cumulative function, we calculate the amount of amplification of each action and the algorithm continues its way to find the best solutions. In this Method, a lateral memory is used to gather the significant points of each iteration of the algorithm. Finally, by considering the domination factor, pareto front is estimated. Results of several experiments show the effectiveness of this method in comparison with genetic algorithm based method.

Keywords: Function optimization, Multiobjective optimization, Learning automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2337 Constrained Particle Swarm Optimization of Supply Chains

Authors: András Király, Tamás Varga, János Abonyi

Abstract:

Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.

Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
2336 How to Build and Evaluate a Solution Method: An Illustration for the Vehicle Routing Problem

Authors: Nicolas Zufferey

Abstract:

The vehicle routing problem (VRP) is a famous combinatorial optimization problem. Because of its well-known difficulty, metaheuristics are the most appropriate methods to tackle large and realistic instances. The goal of this paper is to highlight the key ideas for designing VRP metaheuristics according to the following criteria: efficiency, speed, robustness, and ability to take advantage of the problem structure. Such elements can obviously be used to build solution methods for other combinatorial optimization problems, at least in the deterministic field.

Keywords: Vehicle routing problem, Metaheuristics, Combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
2335 Multi-Focus Image Fusion Using SFM and Wavelet Packet

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.

Keywords: Multi-focus image fusion, Wavelet Packet, Spatial Frequency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
2334 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
2333 The Particle Swarm Optimization Against the Runge’s Phenomenon: Application to the Generalized Integral Quadrature Method

Authors: A. Zerarka, A. Soukeur, N. Khelil

Abstract:

In the present work, we introduce the particle swarm optimization called (PSO in short) to avoid the Runge-s phenomenon occurring in many numerical problems. This new approach is tested with some numerical examples including the generalized integral quadrature method in order to solve the Volterra-s integral equations

Keywords: Integral equation, particle swarm optimization, Runge's phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2332 Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data

Authors: Ayudhia P. Gusti, Semin

Abstract:

It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption.

Keywords: Maritime transportation, reducing fuel, shipping log data, speed optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2331 Production Plan and Technological Variants Optimization by Goal Programming Methods

Authors: Tunjo Perić, Franjo Bratić

Abstract:

In this paper, the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodology compare to the Surrogat Worth Trade-off method in solving this problem.

Keywords: Goal programming, multi objective programming, production plan, SWT method, technological variants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
2330 Social and Spatial Aspects of Housing Development Affecting Urban Quality of Life -the Case of Famagusta

Authors: L. Cazacova, A. Erdelhun, A.M. Saymanlier, N. Cazacova, U. Ulbar

Abstract:

Today due to rising levels of housing- necessities, several problems have been raised regarding to urban quality of life. The aim of the research is to study social and spatial aspects of housing environment and to find out their interaction with the urban quality of life. As a case of study two pilot areas of Famagusta city in North Cyprus, were selected: Baykal, considered as an established urban district and Tuzla, a newly developed peri-urban district. In order to determine urban quality of life in planning and developing of housing areas, social and spatial aspects of selected areas have been examined, differences between them according to the planning policy have been pointed out, advantages and disadvantages of housing planning have been found. As a practical implementation of the research a number of households in each selected area have been interviewed in order to draw a conclusion.

Keywords: housing development, Famagusta, quality of life, social and spatial aspects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
2329 A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery

Authors: Yongquan Zhao, Bo Huang

Abstract:

Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery.

Keywords: Hybrid spatial-temporal-spectral fusion, high resolution synthetic imagery, least square regression, sparse representation, spectral transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
2328 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem

Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih

Abstract:

Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.

Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
2327 A Ground Structure Method to Minimize the Total Installed Cost of Steel Frame Structures

Authors: Filippo Ranalli, Forest Flager, Martin Fischer

Abstract:

This paper presents a ground structure method to optimize the topology and discrete member sizing of steel frame structures in order to minimize total installed cost, including material, fabrication and erection components. The proposed method improves upon existing cost-based ground structure methods by incorporating constructability considerations well as satisfying both strength and serviceability constraints. The architecture for the method is a bi-level Multidisciplinary Feasible (MDF) architecture in which the discrete member sizing optimization is nested within the topology optimization process. For each structural topology generated, the sizing optimization process seek to find a set of discrete member sizes that result in the lowest total installed cost while satisfying strength (member utilization) and serviceability (node deflection and story drift) criteria. To accurately assess cost, the connection details for the structure are generated automatically using accurate site-specific cost information obtained directly from fabricators and erectors. Member continuity rules are also applied to each node in the structure to improve constructability. The proposed optimization method is benchmarked against conventional weight-based ground structure optimization methods resulting in an average cost savings of up to 30% with comparable computational efficiency.

Keywords: Cost-based structural optimization, cost-based topology and sizing optimization, steel frame ground structure optimization, multidisciplinary optimization of steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
2326 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
2325 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
2324 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
2323 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha

Abstract:

Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.

Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2322 Determining the Spatial Vulnerability Levels and Typologies of Coastal Cities to Climate Change: Case of Turkey

Authors: Mediha B. Sılaydın Aydın, Emine D. Kahraman

Abstract:

One of the important impacts of climate change is the sea level rise. Turkey is a peninsula, so the coastal areas of the country are threatened by the problem of sea level rise. Therefore, the urbanized coastal areas are highly vulnerable to climate change. At the aim of enhancing spatial resilience of urbanized areas, this question arises: What should be the priority intervention subject in the urban planning process for a given city. To answer this question, by focusing on the problem of sea level rise, this study aims to determine spatial vulnerability typologies and levels of Turkey coastal cities based on morphological, physical and social characteristics. As a method, spatial vulnerability of coastal cities is determined by two steps as level and type. Firstly, physical structure, morphological structure and social structure were examined in determining spatial vulnerability levels. By determining these levels, most vulnerable areas were revealed as a priority in adaptation studies. Secondly, all parameters are also used to determine spatial typologies. Typologies are determined for coastal cities in order to use as a base for urban planning studies. Adaptation to climate change is crucial for developing countries like Turkey so, this methodology and created typologies could be a guide for urban planners as spatial directors and an example for other developing countries in the context of adaptation to climate change. The results demonstrate that the urban settlements located on the coasts of the Marmara Sea, the Aegean Sea and the Mediterranean respectively, are more vulnerable than the cities located on the Black Sea’s coasts to sea level rise.

Keywords: Climate change, coastal cities, sea level rise, urban land use planning, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
2321 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
2320 Application of Multi-objective Optimization Packages in Design of an Evaporator Coil

Authors: A.Mosavi

Abstract:

A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design.

Keywords: Multi-objective shape optimization, Heat Transfer, multi-physics structures, modeFRONTIER

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
2319 Performance Improvement in Internally Finned Tube by Shape Optimization

Authors: Kyoungwoo Park, Byeong Sam Kim, Hyo-Jae Lim, Ji Won Han, Park Kyoun Oh, Juhee Lee, Keun-Yeol Yu

Abstract:

Predictions of flow and heat transfer characteristics and shape optimization in internally finned circular tubes have been performed on three-dimensional periodically fully developed turbulent flow and thermal fields. For a trapezoidal fin profile, the effects of fin height h, upper fin widths d1, lower fin widths d2, and helix angle of fin ? on transport phenomena are investigated for the condition of fin number of N = 30. The CFD and mathematical optimization technique are coupled in order to optimize the shape of internally finned tube. The optimal solutions of the design variables (i.e., upper and lower fin widths, fin height and helix angle) are numerically obtained by minimizing the pressure loss and maximizing the heat transfer rate, simultaneously, for the limiting conditions of d1 = 0.5~1.5 mm, d2 = 0.5~1.5 mm, h= 0.5~1.5mm, ? = 10~30 degrees. The fully developed flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the multi-objective genetic algorithm that is widely used in the constrained nonlinear optimization problem.

Keywords: Computational fluid dynamics, Genetic algorithm, Internally finned tube with helix angle, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2318 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
2317 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
2316 An Exploration of the Dimensions of Place-Making: A South African Case Study

Authors: W. J. Strydom, K. Puren

Abstract:

Place-making is viewed here as an empowering process in which people represent, improve and maintain their spatial (natural or built) environment. With the above-mentioned in mind, place-making is multi-dimensional and include a spatial dimension (including visual properties or the end product/plan), a procedural dimension during which (negotiation/discussion of ideas with all relevant stakeholders in terms of end product/plan) and a psychological dimension (inclusion of intrinsic values and meanings related to a place in the end product/plan). These three represent dimensions of place-making. The purpose of this paper is to explore these dimensions of place-making in a case study of a local community in Ikageng, Potchefstroom, North-West Province, South Africa. This case study represents an inclusive process that strives to empower a local community (forcefully relocated due to Apartheid legislation in South Africa). This case study focussed on the inclusion of participants in the decision-making process regarding their daily environment. By means of focus group discussions and a collaborative design workshop, data is generated and ultimately creates a linkage with the theoretical dimensions of place-making. This paper contributes to the field of spatial planning due to the exploration of the dimensions of place-making and the relevancy of this process on spatial planning (especially in a South African setting).

Keywords: Case study, place-making, spatial planning, spatial dimension, procedural dimension, psychological dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
2315 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-Commerce, Logistics, Machine Learning, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
2314 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

Authors: A. Jabbari, M. Shakeri, A. Nabavi

Abstract:

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
2313 Stochastic Modeling and Combined Spatial Pattern Analysis of Epidemic Spreading

Authors: S. Chadsuthi, W. Triampo, C. Modchang, P. Kanthang, D. Triampo, N. Nuttavut

Abstract:

We present analysis of spatial patterns of generic disease spread simulated by a stochastic long-range correlation SIR model, where individuals can be infected at long distance in a power law distribution. We integrated various tools, namely perimeter, circularity, fractal dimension, and aggregation index to characterize and investigate spatial pattern formations. Our primary goal was to understand for a given model of interest which tool has an advantage over the other and to what extent. We found that perimeter and circularity give information only for a case of strong correlation– while the fractal dimension and aggregation index exhibit the growth rule of pattern formation, depending on the degree of the correlation exponent (β). The aggregation index method used as an alternative method to describe the degree of pathogenic ratio (α). This study may provide a useful approach to characterize and analyze the pattern formation of epidemic spreading

Keywords: spatial pattern epidemics, aggregation index, fractaldimension, stochastic, long-rang epidemics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680