Search results for: Threshold selection.
1176 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.
Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4721175 Material Handling Equipment Selection using Hybrid Monte Carlo Simulation and Analytic Hierarchy Process
Authors: Amer M. Momani, Abdulaziz A. Ahmed
Abstract:
The many feasible alternatives and conflicting objectives make equipment selection in materials handling a complicated task. This paper presents utilizing Monte Carlo (MC) simulation combined with the Analytic Hierarchy Process (AHP) to evaluate and select the most appropriate Material Handling Equipment (MHE). The proposed hybrid model was built on the base of material handling equation to identify main and sub criteria critical to MHE selection. The criteria illustrate the properties of the material to be moved, characteristics of the move, and the means by which the materials will be moved. The use of MC simulation beside the AHP is very powerful where it allows the decision maker to represent his/her possible preference judgments as random variables. This will reduce the uncertainty of single point judgment at conventional AHP, and provide more confidence in the decision problem results. A small business pharmaceutical company is used as an example to illustrate the development and application of the proposed model.Keywords: Analytic Hierarchy Process (AHP), Materialhandling equipment selection, Monte Carlo simulation, Multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31381174 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30521173 A New Hybrid K-Mean-Quick Reduct Algorithm for Gene Selection
Authors: E. N. Sathishkumar, K. Thangavel, T. Chandrasekhar
Abstract:
Feature selection is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. Here a novel approach is proposed Hybrid K-Mean-Quick Reduct (KMQR) algorithm for gene selection from gene expression data. In this study, the entire dataset is divided into clusters by applying K-Means algorithm. Each cluster contains similar genes. The high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm to all the clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value as 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. The proposed work shows that the high classification accuracy.
Keywords: Clustering, Gene Selection, K-Mean-Quick Reduct, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22981172 Attribute Selection for Preference Functions in Engineering Design
Authors: Ali E. Abbas
Abstract:
Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.
Keywords: Decision analysis, engineering design, direct vs. indirect values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9091171 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method
Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang
Abstract:
The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.
Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521170 Preferred Character Size for Oblique Angles
Authors: Photjanat Phimnom, Haruetai Lohasiriwat
Abstract:
In today’s world, the LED display has been used for presenting visual information under various circumstances. Such information is an important intermediary in the human information processing. Researchers have been investigated diverse factors that influence this process effectiveness. The letter size is undoubtedly one major factor that has been tested and recommended by many standards and guidelines. However, viewing information on the display from direct perpendicular position is a typical assumption whereas many actual events are required viewing from the angles. This current research aims to study the effect of oblique viewing angle and viewing distance on ability to recognize alphabet, number, and English word. The total of ten participants was volunteered to our 3 x 4 x 4 within subject study. Independent variables include three distance levels (2, 6, and 12 m), four oblique angles (0, 45, 60, 75 degree), and four target types (alphabet, number, short word, and long word). Following the method of constant stimuli our study suggests that the larger oblique angle, ranging from 0 to 75 degree from the line of sight, results in significant higher legibility threshold or larger font size required (p-value < 0.05). Viewing distance factor also shows to have significant effect on the threshold (p-value < 0.05). However, the effect from distance factor is expected to be confounded by the quality of the screen used in our experiment. Lastly, our results show that single alphabet as well as single number are recognized at significant lower threshold (smaller font size) as compared to both short and long words (p-value < 0.05). Therefore, it is recommended that when designs information to be presented on LED display, understanding of all possible ranges of oblique angle should be taken into account in order to specify the preferred letter size. Additionally, the recommendation of letter size for 100% legibility in our tested conditions is provided in the paper.
Keywords: Letter Size, Oblique Angle, Viewing Distance, Legibility Threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13301169 Multiple Criteria Decision Making for Turkish Air Force Stealth Fighter Aircraft Selection
Authors: C. Ardil
Abstract:
Neutrosophic logic decision analysis is proposed as a method of stealth fighter aircraft selection for Turkish Air Force. The opinion of experts is employed to rank the alternatives across a set of criteria. The analyst uses neutrosophic logic numbers to describe the experts' preferences. This approach can handle the situation in the case of unavailability of precise data, which is most commonly the case in stealth fighter aircraft selection. Neutrosophic logic numbers can consider the imprecision of the factors affecting decision making such as stealth analysis, survivability analysis, and performance analysis. Neutrosophic logic ranking is achieved using weighted arithmetic operator and weighted geometric operator and the alternatives are ranked from best to worst. An example is also presented to illustrate the applicability and effectiveness of the proposed method.
Keywords: Neutrosophic set theory, stealth fighter aircraft selection, multiple criteria decision-making, neutrosophic logic decision making, Turkish Air Force, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4971168 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.
Keywords: Car parking monitoring, sensor node, wireless sensor network, network protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25171167 Progressive Changes in Physicochemical Constituent of Rainwater: A Case Study at Oyoko, a Rural Community in Ghana
Authors: J. O. Yeboah, K Aboraa, K. Kodom
Abstract:
The chemical and physical characteristics of rainwater harvested from a typical rooftop were progressively studied. The samples of rainwater collected were analyzed for pH, major ion concentrations, TDS, turbidity, conductivity. All the Physicochemical constituents fell within the WHO guideline limits at some points as rainfall progresses except the pH. All the components of rainwater quality measured during the study showed higher concentrations during the early stages of rainfall and reduce as time progresses. There was a downward trend in terms of pH as rain progressed, with 18% of the samples recording pH below the WHO limit of 6.5-8.0. It was observed that iron concentration was above the WHO threshold value of 0.3 mg/l on occasions of heavy rains. The results revealed that most of physicochemical characteristics of rainwater samples were generally below the WHO threshold, as such, the rainwater characteristics showed satisfactory conditions in terms of physicochemical constituents.
Keywords: Conductivity, pH, physicochemistry, rainwater quality, TDS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13311166 Bed Site Selection by Wild Boar (Sus scrofa) in Baghshadi Protected Area, Yazd Province, Iran
Authors: S. Aghainajafizadeh, F. Heydari, H. Abbasian
Abstract:
Populations of wild boar present in semi-arid of central Iran. We studied features influencing bed site selection by this species in semi-arid central steppe of Iran. Habitat features of the detected bed site were compared with randomly selected by quantifying number of habitat variables in semi- arid area in Iran. The results revealed that the most important influencing factors in bed site selection were vegetation cover, number of Artemisia sieberi, percentage cover and height of Acer cinerascens, percentage cover and height of Amygdalus scoparia. This is the first ecological study of the wild boar in a protected area of the semi desert biome of Iran. Sustainability of wild boar populations in this area dependent to shrubs of Amygdalus scoparia and Acer cinerascens for thermal and camouflage cover.
Keywords: Wild boar, Bed site selection, Yazd, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13001165 Determinate Fuzzy Set Ranking Analysis for Combat Aircraft Selection with Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
Using the aid of Hausdorff distance function and Minkowski distance function, this study proposes a novel method for selecting combat aircraft for Air Force. In order to do this, the proximity measure method was developed with determinate fuzzy degrees based on the relationship between attributes and combat aircraft alternatives. The combat aircraft selection attributes were identified as payloadability, maneuverability, speedability, stealthability, and survivability. Determinate fuzzy data from the combat aircraft attributes was then aggregated using the determinate fuzzy weighted arithmetic average operator. For the selection of combat aircraft, correlation analysis of the ranking order patterns of options was also examined. A numerical example from military aviation is used to demonstrate the applicability and effectiveness of the proposed method.
Keywords: Combat aircraft selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Hausdorff distance function, Minkowski distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551164 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings
Authors: Hyunchul Ahn, William X. S. Wong
Abstract:
Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.
Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111163 Choice of Efficient Information System with Service-Oriented Architecture using Multiple Criteria Threshold Algorithms (With Practical Example)
Authors: Irina Pyrlina
Abstract:
Author presents the results of a study conducted to identify criteria of efficient information system (IS) with serviceoriented architecture (SOA) realization and proposes a ranking method to evaluate SOA information systems using a set of architecture quality criteria before the systems are implemented. The method is used to compare 7 SOA projects and ranking result for SOA efficiency of the projects is provided. The choice of SOA realization project depends on following criteria categories: IS internal work and organization, SOA policies, guidelines and change management, processes and business services readiness, risk management and mitigation. The last criteria category was analyzed on the basis of projects statistics.
Keywords: multiple criteria threshold algorithm, serviceoriented architecture, SOA operational risks, efficiency criteria for IS architecture, projects ranking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13941162 A new Adaptive Approach for Histogram based Mouth Segmentation
Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.Keywords: Feature extraction, Segmentation, Image processing, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881161 Optimized Weight Vector for QoS Aware Web Service Selection Algorithm Using Particle Swarm Optimization
Authors: N. Arulanand, P. M. Ananth
Abstract:
Quality of Service (QoS) attributes as part of the service description is an important factor for service attribute. It is not easy to exactly quantify the weight of each QoS conditions since human judgments based on their preference causes vagueness. As web services selection requires optimization, evolutionary computing based on heuristics to select an optimal solution is adopted. In this work, the evolutionary computing technique Particle Swarm Optimization (PSO) is used for selecting a suitable web services based on the user’s weightage of each QoS values by optimizing the QoS weight vector and thereby finding the best weight vectors for best services that is being selected. Finally the results are compared and analyzed using static inertia weight and deterministic inertia weight of PSO.Keywords: QoS, Optimization, Particle Swarm Optimization (PSO), weight vector, web services, web service selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131160 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441159 Low Leakage MUX/XOR Functions Using Symmetric and Asymmetric FinFETs
Authors: Farid Moshgelani, Dhamin Al-Khalili, Côme Rozon
Abstract:
In this paper, FinFET devices are analyzed with emphasis on sub-threshold leakage current control. This is achieved through proper biasing of the back gate, and through the use of asymmetric work functions for the four terminal FinFET devices. We are also examining different configurations of multiplexers and XOR gates using transistors of symmetric and asymmetric work functions. Based on extensive characterization data for MUX circuits, our proposed configuration using symmetric devices lead to leakage current and delay improvements of 65% and 47% respectively compared to results in the literature. For XOR gates, a 90% improvement in the average leakage current is achieved by using asymmetric devices. All simulations are based on a 25nm FinFET technology using the University of Florida UFDG model.Keywords: FinFET, logic functions, asymmetric workfunction devices, back gate biasing, sub-threshold leakage current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28621158 A Comparison of SVM-based Criteria in Evolutionary Method for Gene Selection and Classification of Microarray Data
Authors: Rameswar Debnath, Haruhisa Takahashi
Abstract:
An evolutionary method whose selection and recombination operations are based on generalization error-bounds of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently [7]. In this paper, we will use the derivative of error-bound (first-order criteria) to select and recombine gene features in the evolutionary process, and compare the performance of the derivative of error-bound with the error-bound itself (zero-order) in the evolutionary process. We also investigate several error-bounds and their derivatives to compare the performance, and find the best criteria for gene selection and classification. We use 7 cancer-related human gene expression datasets to evaluate the performance of the zero-order and first-order criteria of error-bounds. Though both criteria have the same strategy in theoretically, experimental results demonstrate the best criterion for microarray gene expression data.Keywords: support vector machine, generalization error-bound, feature selection, evolutionary algorithm, microarray data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361157 Location Based Clustering in Wireless Sensor Networks
Authors: Ashok Kumar, Narottam Chand, Vinod Kumar
Abstract:
Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.
Keywords: Wireless sensor networks, clustering, energy efficient, localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26851156 EMD-Based Signal Noise Reduction
Authors: A.O. Boudraa, J.C. Cexus, Z. Saidi
Abstract:
This paper introduces a new signal denoising based on the Empirical mode decomposition (EMD) framework. The method is a fully data driven approach. Noisy signal is decomposed adaptively into oscillatory components called Intrinsic mode functions (IMFs) by means of a process called sifting. The EMD denoising involves filtering or thresholding each IMF and reconstructs the estimated signal using the processed IMFs. The EMD can be combined with a filtering approach or with nonlinear transformation. In this work the Savitzky-Golay filter and shoftthresholding are investigated. For thresholding, IMF samples are shrinked or scaled below a threshold value. The standard deviation of the noise is estimated for every IMF. The threshold is derived for the Gaussian white noise. The method is tested on simulated and real data and compared with averaging, median and wavelet approaches.
Keywords: Empirical mode decomposition, Signal denoisingnonstationary process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40021155 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Authors: Khin May Win, Nan Sai Moon Kham
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411154 Personnel Selection Based on Step-Wise Weight Assessment Ratio Analysis and Multi-Objective Optimization on the Basis of Ratio Analysis Methods
Authors: Emre Ipekci Cetin, Ebru Tarcan Icigen
Abstract:
Personnel selection process is considered as one of the most important and most difficult issues in human resources management. At the stage of personnel selection, the applicants are handled according to certain criteria, the candidates are dealt with, and efforts are made to select the most appropriate candidate. However, this process can be more complicated in terms of the managers who will carry out the staff selection process. Candidates should be evaluated according to different criteria such as work experience, education, foreign language level etc. It is crucial that a rational selection process is carried out by considering all the criteria in an integrated structure. In this study, the problem of choosing the front office manager of a 5 star accommodation enterprise operating in Antalya is addressed by using multi-criteria decision-making methods. In this context, SWARA (Step-wise weight assessment ratio analysis) and MOORA (Multi-Objective Optimization on the basis of ratio analysis) methods, which have relatively few applications when compared with other methods, have been used together. Firstly SWARA method was used to calculate the weights of the criteria and subcriteria that were determined by the business. After the weights of the criteria were obtained, the MOORA method was used to rank the candidates using the ratio system and the reference point approach. Recruitment processes differ from sector to sector, from operation to operation. There are a number of criteria that must be taken into consideration by businesses in accordance with the structure of each sector. It is of utmost importance that all candidates are evaluated objectively in the framework of these criteria, after these criteria have been carefully selected in the selection of suitable candidates for employment. In the study, staff selection process was handled by using SWARA and MOORA methods together.
Keywords: Accommodation establishments, human resource management, MOORA, multi criteria decision making, SWARA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12421153 Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems
Authors: Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting, Hwei-Wen Luo, Yu-Peng Yu
Abstract:
Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm.Keywords: Artificial Immune System, Clonal Selection, Flow-shop Scheduling Problems, Co-evolutional strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481152 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS Process sensor, Process, Voltage and Temperature (PVT) sensor, threshold extractor circuit, Vth extractor circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7541151 Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks
Authors: Sakshi Kausha, R.K Sharma
Abstract:
High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.Keywords: Buffer Management, Consecutive packet loss, Quality-of-Service, Priority based packet discarding, partial buffersharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371150 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5871149 Mathematical Modeling for Dengue Transmission with the Effect of Season
Authors: R. Kongnuy., P. Pongsumpun
Abstract:
Mathematical models can be used to describe the transmission of disease. Dengue disease is the most significant mosquito-borne viral disease of human. It now a leading cause of childhood deaths and hospitalizations in many countries. Variations in environmental conditions, especially seasonal climatic parameters, effect to the transmission of dengue viruses the dengue viruses and their principal mosquito vector, Aedes aegypti. A transmission model for dengue disease is discussed in this paper. We assume that the human and vector populations are constant. We showed that the local stability is completely determined by the threshold parameter, 0 B . If 0 B is less than one, the disease free equilibrium state is stable. If 0 B is more than one, a unique endemic equilibrium state exists and is stable. The numerical results are shown for the different values of the transmission probability from vector to human populations.Keywords: Dengue disease, mathematical model, season, threshold parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22131148 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601147 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers
Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice
Abstract:
In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.
Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763