Search results for: Stimulation Parameters
3588 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20393587 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach
Authors: Abdallah Al-Shammari
Abstract:
This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solutionKeywords: Linear programming, Petrochemicals, stability analysis, uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513586 Does Leisure Time Use Contribute to a Wage Increase of the Thai People?
Authors: Siriwan Saksiriruthai
Abstract:
This paper develops models to analyze the relationship between leisure time and wage change. Using Thailand-s Time Use Survey and Labor Force Survey data, the estimation of wage changes in response to leisure time change indicates that media receiving, personal care and social participation and volunteer activities are the ones that significantly raise hourly wages. Thus, the finding suggests the stimulation in time use for media access to enhance knowledge and productivity, personal care for attractiveness and healthiness in order to raise productivity, and social activities to develop connections for possible future opportunities including wage increase. These activities should be promoted for productive leisure time and for welfare improvement.Keywords: Leisure, wage, time use, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15873585 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels
Abstract:
Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.
Keywords: Activation parameters, creep mechanisms, high strength steels, low temperature creep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7123584 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco
Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed
Abstract:
Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.
Keywords: Mammography, image quality, breast dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7833583 Parameters Affecting the Elasto-Plastic Behavior of Outrigger Braced Walls to Earthquakes
Authors: T. A. Sakr, Hanaa E. Abd-El- Mottaleb
Abstract:
Outrigger-braced wall systems are commonly used to provide high rise buildings with the required lateral stiffness for wind and earthquake resistance. The existence of outriggers adds to the stiffness and strength of walls as reported by several studies. The effects of different parameters on the elasto-plastic dynamic behavior of outrigger-braced wall systems to earthquakes are investigated in this study. Parameters investigated include outrigger stiffness, concrete strength, and reinforcement arrangement as the main design parameters in wall design. In addition to being significantly affect the wall behavior, such parameters may lead to the change of failure mode and the delay of crack propagation and consequently failure as the wall is excited by earthquakes. Bi-linear stress-strain relation for concrete with limited tensile strength and truss members with bi-linear stress-strain relation for reinforcement were used in the finite element analysis of the problem. The famous earthquake record, El-Centro, 1940 is used in the study. Emphasize was given to the lateral drift, normal stresses and crack pattern as behavior controlling determinants. Results indicated significant effect of the studied parameters such that stiffer outrigger, higher grade concrete and concentrating the reinforcement at wall edges enhance the behavior of the system. Concrete stresses and cracking behavior are too much enhanced while less drift improvements are observed.
Keywords: Structures, High rise, Outrigger, Shear Wall, Earthquake, Nonlinear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23533582 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28283581 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.
Keywords: Mathematics, motivation, secondary school, student, practical problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10633580 Switched Reluctance Generator for Wind Power Applications
Authors: M. Nassereddine, J. Rizk, M. Nagrial
Abstract:
Green house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.Keywords: Switched Reluctance Generator, Wind Power, Electrical Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30033579 Application of Remote Sensing in Development of Green Space
Authors: Mehdi Saati, Mohammad Bagheri, Fatemeh Zamanian
Abstract:
One of the most important parameters to develop and manage urban areas is appropriate selection of land surface to develop green spaces in these areas. In this study, in order to identify the most appropriate sites and areas cultivated for ornamental species in Jiroft, Landsat Enhanced Thematic Mapper Plus (ETM+) images due to extract the most important effective climatic and adaphic parameters for growth ornamental species were used. After geometric and atmospheric corrections applied, to enhance accuracy of multi spectral (XS) bands, the fusion of Landsat XS bands by IRS-1D panchromatic band (PAN) was performed. After field sampling to evaluate the correlation between different factors in surface soil sampling location and different bands digital number (DN) of ETM+ sensor on the same points, correlation tables formed using the best computational model and the map of physical and chemical parameters of soil was produced. Then the accuracy of them was investigated by using kappa coefficient. Finally, according to produced maps, the best areas for cultivation of recommended species were introduced.Keywords: Locate ornamental species, Remote Sensing, Adaphic parameters, ETM+, Jiroft
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24683578 Matlab/Simulink-Based Transient Stability Analysis Of A Sensorless Synchronous Reluctance Motor
Authors: Mostafa.A. Fellani, Daw .E. Abaid
Abstract:
This paper deals with stability analysis for synchronous reluctance motors drive. Special attention is paid to the transient performance with variations in motor's parameters such as Ld and Rs. A study of the dynamic control using d-q model is presented first in order to clarify the stability of the motor drive system. Based on the experimental parameters of the synchronous reluctance motor, this paper gives some simulation results using MATLAB/SIMULINK software packages. It is concluded that the motor parameters, especially Ld, affect the estimator stability and hence the whole drive system.
Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sensorless Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39743577 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology
Authors: Anjian Chen, Joseph C. Chen
Abstract:
This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.
Keywords: Additive manufacturing, fused deposition modeling, surface roughness, Six-Sigma, Taguchi method, 3D printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13873576 Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique
Authors: M. P. Chakravarthy, N. Ramanaiah, B. S. K.Sundara Siva Rao
Abstract:
Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.
Keywords: 70/30 Cu-Ni alloy, pulsed current GTAW, mechanical properties, Taguchi technique, analysis of variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31463575 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11793574 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis
Authors: S. Dorbani, M. Badaoui, D. Benouar
Abstract:
The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.
Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12993573 Operation Parameters of Vacuum Cleaned Filters
Authors: Wilhelm Hoeflinger, Thomas Laminger, Johannes Wolfslehner
Abstract:
For vacuum cleaned dust filters there exist no calculation methods to determine design parameters (e.g. traverse velocity of the nozzle, filter area…). In this work a method to calculate the optimum traverse velocity of the nozzle of an industrial-size flat dust filter at a given mean pressure drop and filter face velocity was elaborated. Well-known equations for the design of a cleanable multi-chamber bag-house-filter were modified in order to take into account a continuously regeneration of a dust filter by a nozzle. Thereby, the specific filter medium resistance and the specific cake resistance values are needed which can be derived from filter tests under constant operation conditions.
A lab-scale filter test rig was used to derive the specific filter media resistance value and the specific cake resistance value for vacuum cleaned filter operation. Three different filter media were tested and the determined parameters were compared to each other.
Keywords: Design of dust filter, Dust removing, Filter regeneration, Operation parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323572 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.
Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4443571 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield
Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork
Abstract:
The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.
Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13313570 The Impact of Fish Cages on Water Quality in One Fish Farm in Croatia
Authors: G. Jelic Mrcelic, M. Sliskovic
Abstract:
In Croatia, the majority of cultured marine fish species are reared in net cages. The intensive production of the fish in net cages may generate the considerable amount of bio waste and change water quality especially in enclosed and semi-enclosed coastal areas. The aim of this paper is to assess the potential impact of sea bass (Dicentrarchus labrax L.) cage farm on water quality. The weak relationship between food supply and water quality parameters (nutrient content and phytoplankton biomass) was found, but significant changes in oxygen saturation was observed in the cages during the warmer period of a year especially in the morning (occasionally it dropped below 70 %). Despite of, satisfactory results of water quality parameters, it is necessary to establish comprehensive monitoring process, especially to include quality assessment of fouling communities.
Keywords: Mariculture, monitoring, fish cages, water quality parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26583569 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.
Keywords: NARX, prediction, stock market, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8163568 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing
Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak
Abstract:
In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22683567 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation
Abstract:
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.
Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25233566 An Experimental Investigation on the Effect of Deep cold Rolling Parameters on Surface Roughness and Hardness of AISI 4140 Steel
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma
Abstract:
Deep cold rolling (DCR) is a cold working process, which easily produces a smooth and work-hardened surface by plastic deformation of surface irregularities. In the present study, the influence of main deep cold rolling process parameters on the surface roughness and the hardness of AISI 4140 steel were studied by using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in terms of identifying the predominant factor amongst the selected parameters, their order of significance and setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. It was found that the ball diameter, rolling force, initial surface roughness and number of tool passes are the most pronounced parameters, which have great effects on the work piece-s surface during the deep cold rolling process. A simple, inexpensive and newly developed DCR tool, with interchangeable collet for using different ball diameters, was used throughout the experimental work presented in this paper.
Keywords: Deep cold rolling, design of experiments, surface hardness, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21553565 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method
Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil
Abstract:
The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.
Keywords: Additive manufacturing, selective laser melting, surface roughness, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9683564 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives Using Taguchi Experimental Design Methodology
Authors: P. Pimsee, C. Sablayrolles, P. de Caro, J. Guyomarch, N. Lesage, M. Montréjaud-Vignoles
Abstract:
The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 polycyclic aromatic hydrocarbons (PAHs) and derivates, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For Gasoline (SP95-E10) and Diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.
Keywords: Monitoring, PAHs, SBSE, water soluble fraction, Taguchi experimental design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19733563 An Experimentally Validated Thermo- Mechanical Finite Element Model for Friction Stir Welding in Carbon Steels
Authors: A. H. Kheireddine, A. A. Khalil, A. H. Ammouri, G. T. Kridli, R. F. Hamade
Abstract:
Solidification cracking and hydrogen cracking are some defects generated in the fusion welding of ultrahigh carbon steels. However, friction stir welding (FSW) of such steels, being a solid-state technique, has been demonstrated to alleviate such problems encountered in traditional welding. FSW include different process parameters that must be carefully defined prior processing. These parameters included but not restricted to: tool feed, tool RPM, tool geometry, tool tilt angle. These parameters form a key factor behind avoiding warm holes and voids behind the tool and in achieving a defect-free weld. More importantly, these parameters directly affect the microstructure of the weld and hence the final mechanical properties of weld. For that, 3D finite element (FE) thermo-mechanical model was developed using DEFORM 3D to simulate FSW of carbon steel. At points of interest in the joint, tracking is done for history of critical state variables such as temperature, stresses, and strain rates. Typical results found include the ability to simulate different weld zones. Simulations predictions were successfully compared to experimental FSW tests. It is believed that such a numerical model can be used to optimize FSW processing parameters to favor desirable defect free weld with better mechanical properties.
Keywords: Carbon Steels, DEFORM 3D, FEM, Friction stir welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25703562 Simulation Study of Asphaltene Deposition and Solubility of CO2 in the Brine during Cyclic CO2 Injection Process in Unconventional Tight Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Sun Lu, Syed Jamal-Ud-Din, Xinzhe Zhao
Abstract:
A compositional reservoir simulation model (CMG-GEM) was used for cyclic CO2 injection process in unconventional tight reservoir. Cyclic CO2 injection is an enhanced oil recovery process consisting of injection, shut-in, and production. The study of cyclic CO2 injection and hydrocarbon recovery in ultra-low permeability reservoirs is mainly a function of rock, fluid, and operational parameters. CMG-GEM was used to study several design parameters of cyclic CO2 injection process to distinguish the parameters with maximum effect on the oil recovery and to comprehend the behavior of cyclic CO2 injection in tight reservoir. On the other hand, permeability reduction induced by asphaltene precipitation is one of the major issues in the oil industry due to its plugging onto the porous media which reduces the oil productivity. In addition to asphaltene deposition, solubility of CO2 in the aquifer is one of the safest and permanent trapping techniques when considering CO2 storage mechanisms in geological formations. However, the effects of the above uncertain parameters on the process of CO2 enhanced oil recovery have not been understood systematically. Hence, it is absolutely necessary to study the most significant parameters which dominate the process. The main objective of this study is to improve techniques for designing cyclic CO2 injection process while considering the effects of asphaltene deposition and solubility of CO2 in the brine in order to prevent asphaltene precipitation, minimize CO2 emission, optimize cyclic CO2 injection, and maximize oil production.
Keywords: Tight reservoirs, cyclic O2 injection, asphaltene, solubility, reservoir simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18173561 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution
Authors: F. Z. Doğru, O. Arslan
Abstract:
In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.
Keywords: Burr XII distribution, robust estimator, M-estimator, maximum likelihood, least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26573560 Estimating Regression Effects in Com Poisson Generalized Linear Model
Authors: Vandna Jowaheer, Naushad A. Mamode Khan
Abstract:
Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.
Keywords: Com Poisson, Cross-sectional, Maximum Likelihood, Quasi likelihood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17613559 Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique
Authors: Vladimir Aleksandrovich Rogov, Ghorbani Siamak
Abstract:
Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.
Keywords: Turning, Cutting conditions, Surface roughness, Natural frequency, Taguchi method, ANOVA, S/N ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4613