Search results for: Fusion of neural networkfuzzysystems
1194 Face Recognition with PCA and KPCA using Elman Neural Network and SVM
Authors: Hossein Esbati, Jalil Shirazi
Abstract:
In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19291193 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42171192 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25281191 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361190 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands
Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy
Abstract:
Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22121189 Pseudo-almost Periodic Solutions of a Class Delayed Chaotic Neural Networks
Authors: Farouk Cherif
Abstract:
This paper is concerned with the existence and unique¬ness of pseudo-almost periodic solutions to the chaotic delayed neural networks (t)= —Dx(t) ± A f (x (t)) B f (x (t — r)) C f (x(p))dp J (t) . t-o Under some suitable assumptions on A, B, C, D, J and f, the existence and uniqueness of a pseudo-almost periodic solution to equation above is obtained. The results of this paper are new and they complement previously known results.
Keywords: Chaotic neural network, Hamiltonian systems, Pseudo almost periodic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13091188 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing
Authors: Fengxia Zheng, Shouming Zhong
Abstract:
ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.
Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36851187 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm
Authors: H.Mohammadi Majd, M.Jalali Azizpour
Abstract:
In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881186 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays
Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong
Abstract:
In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results
Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19071185 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271184 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15891183 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561182 Neural Adaptive Switching Control of Robotic Systems
Authors: A. Denker, U. Akıncıoğlu
Abstract:
In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.Keywords: Neural networks, robotics, direct inverse control, predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21821181 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.
Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191180 Globally Exponential Stability for Hopfield Neural Networks with Delays and Impulsive Perturbations
Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati
Abstract:
In this paper, we consider the global exponential stability of the equilibrium point of Hopfield neural networks with delays and impulsive perturbation. Some new exponential stability criteria of the system are derived by using the Lyapunov functional method and the linear matrix inequality approach for estimating the upper bound of the derivative of Lyapunov functional. Finally, we illustrate two numerical examples showing the effectiveness of our theoretical results.
Keywords: Hopfield Neural Networks, Exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23471179 Representing Collective Unconsciousness Using Neural Networks
Authors: Pierre Abou-Haila, Richard Hall, Mark Dawes
Abstract:
Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.
Keywords: Collective unconsciousness, neural networks, adaptation, predator-prey simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231178 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images
Authors: K.Mala, V.Sadasivam, S.Alagappan
Abstract:
Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.
Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29871177 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731176 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal
Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden
Abstract:
Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24711175 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.
Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271174 Adaptive Neural Network Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi
Abstract:
An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25271173 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871172 Modeling of Co-Cu Elution From Clinoptilolite using Neural Network
Authors: John Kabuba, Antoine Mulaba-Bafubiandi
Abstract:
The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.
Keywords: Clinoptilolite, elution, modeling, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14251171 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17391170 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card
Authors: Petar Halachev
Abstract:
Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.Keywords: artificial neural network, balanced scorecard, e-learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441169 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks
Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat
Abstract:
Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.
Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29821168 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28831167 Application of Fuzzy Neural Network for Image Tumor Description
Authors: Nahla Ibraheem Jabbar, Monica Mehrotra
Abstract:
This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.
Keywords: FCM, features extraction, medical image processing, neural network, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21081166 A Neural Computing-Based Approach for the Early Detection of Hepatocellular Carcinoma
Authors: Marina Gorunescu, Florin Gorunescu, Kenneth Revett
Abstract:
Hepatocellular carcinoma, also called hepatoma, most commonly appears in a patient with chronic viral hepatitis. In patients with a higher suspicion of HCC, such as small or subtle rising of serum enzymes levels, the best method of diagnosis involves a CT scan of the abdomen, but only at high cost. The aim of this study was to increase the ability of the physician to early detect HCC, using a probabilistic neural network-based approach, in order to save time and hospital resources.Keywords: Early HCC diagnosis, probabilistic neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12611165 Modified Functional Link Artificial Neural Network
Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot
Abstract:
In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.Keywords: DLFANN, FLANN, M-FLANN, MLP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802