
Abstract— Instead of representing individual cognition only,

population cognition is represented using artificial neural networks

whilst maintaining individuality. This population network trains

continuously, simulating adaptation. An implementation of two

coexisting populations is compared to the Lotka-Volterra model of

predator-prey interaction. Applications include multi-agent systems

such as artificial life or computer games.

Keywords— collective unconsciousness, neural networks,

adaptation, predator-prey simulation

I. INTRODUCTION

rtificial Neural Networks (ANNs) attempt to replicate the

connectivity and functionality of biological neural

networks in order to simulate learning [1], [2], [3]. They have

been successfully applied in a number of domains including

robotics, computer vision, pattern recognition, speech

recognition, and image processing. These typical applications

assume that a neural network represents a single individual.

In order to represent populations of individuals accurately,

it could be argued that each individual should have their

cognition represented by a dedicated ANN, regardless of how

cognition is defined. However, each ANN would need to be

trained prior to simulating population interactions otherwise

each individual would have no knowledge whatsoever on their

instantiation (eg. birth), which might place them at a

significant disadvantage with respect to their environment or

other more highly-trained individuals. In addition, if all

individuals need to be trained before birth, it means that the

total number of births needs to be known before run-time;

impossible for emergent dynamic simulations such as artificial

life. Finally, even if training time for a large population were

acceptable, it may be difficult to construct meaningful and

reasonable variations of training data that are supposed to

This work was supported in part by

Department of Computer Science and Computer Engineering,

La Trobe University, Bundoora, Victoria, Australia.

P. Abou-Haila is with Department of Computer Science and Computer

Engineering, La Trobe University, Bundoora, Victoria, Australia. (e-mail:

P.Abou-Haila@latrobe,edu,au).

R. Hall, is with Department of Computer Science and Computer

Engineering, La Trobe University, Bundoora, Victoria, Australia. (e-mail:

R.Hall@latrobe,edu,au).

M. Dawes is with Department of Computer Science and Computer

Engineering, La Trobe University, Bundoora, Victoria, Australia. (e-mail:

M.Dawes@students.latrobe,edu,au).

engender individuality.

However, it may be unnecessary for each individual to have

a dedicated ANN. The Jungian theory of collective

unconsciousness states that there is part of the unconscious

mind that is shared by a society, a people, or all humankind

which contains concepts of science, religion and morality and

is a product of ancestral experience [4], [5], [6].

This psychology theory can be loosely interpreted (in

engineering terms) as a global common mechanism that

represents the cognition of an entire population, assuming that

the requirements that individuals take turns in cognitive

processing is acceptable. Using a typical ANN for this global

mechanism is computationally feasible, because it has exactly

the same requirements as a single ANN.

Unfortunately, a side effect of this naive implementation is

that the concept of individuality is lost because the cognitive

representation for each agent is identical. Consequently

agents are just an army of deterministic clones; in exactly the

same situation, all agents will necessarily behave in exactly

the same way. While it might be possible to avoid placing

different agents in the same situation, such an implementation

fails to accurately represent the theory of collective

unconsciousness, because the theory requires individuality in

addition to universality.

In order to avoid cloning, each individual must be allowed

to affect the global mechanism in some manner. Since Jung

fails to specify precisely how such interaction occurs, the

precise details of this interaction can satisfy the whim of any

implementation criteria, as long as it agrees with the theory.

In this instance, we would like to preserve the ability of the

mechanism to simulate learning when it is made global. The

advantage of such preservation is that adaptation can occur

both at the individual and population levels, which is in

accordance with Jung’s theory.

The global mechanism must also affect each individual. On

instantiation, individuals must be given enough knowledge

from the global mechanism to allow them to begin interacting

in their environment immediately. In addition, to simulate

generation in nature, the way a child agent interacts with the

global mechanism could resemble the way its parents interact

with the global mechanism. Both these ideas are designed

into what we call a population artificial neural network (PN).

In comparison to dedicated neural networks, the benefit of

using PN is that a single neural network is trained once prior

to simulation, rather than needing to train as many neural

networks as there are individuals. In addition, instead of

Representing Collective Unconsciousness Using

Neural Networks

Pierre Abou-Haila, Richard Hall, Mark Dawes

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1501International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

individuals learning independently once instantiated,

adaptation also occurs at a global level. Consequently,

individuals that are instantiated later rather than earlier

interact using a PN with greater exposure.

We did not know how to properly evaluate such a

representation, as a precise mechanistic specification for

cognition has yet to emerge from psychology to which such a

representation can be compared. Furthermore, an ANN is

much simpler than a biological neural network, thus

evaluating its biological cognitive accuracy would be difficult

for a single individual let alone a population.

However, it is possible to evaluate the feasibility of

constructing an interacting population of simple agents, with

each population having its own PN. We implemented a

predator-prey ecosystem because such ecosystems supposedly

approximate the Lotka-Volterra model of population numbers

[7], [8], [9], [10], [11]. Such numbers are trivial to record

during simulation.

The organisation of this paper is as follows. In Section 2,

we design the PN. In Section 3 we discuss our

implementation of the PN in the predator-prey ecosystem. In

Section 4 we evaluate this ecosystem with respect to the

scalability of population size and with respect to the Lotka-

Volterra model. Finally, in Section 5 we indicate some new

directions for this work that we are currently pursuing.

II. POPULATION NETWORK DESIGN

There are many ways in which interactions between the PN

and individuals could be defined, but no benchmark exists

with which these interactions can be compared.

Consequently, we establish our own set of design criteria and

attempt to meet these. Then, we assess our agents with

respect to intelligent agents, since agent designs are usually

considered with respect to this field.

 It was necessary to establish our own criteria for the

manner in which individuals precisely modify the global

consciousness, since the theory of collective unconsciousness

lacks such criteria. In attempting to keep with the spirit of the

theory we established three criteria: universality, individuality,

and simplicity.

For universality, it was necessary for the PN to fully

represent the cognition of all individual agents that were

connected to it. We assume that members of a population are

assumed to have exactly the same characteristics by default,

and that this assumption includes cognition. Consequently, all

agents use their reasoning mechanism in exactly the same way

and modify the same components of the reasoning

mechanism. In addition, since the PN simulates isolated

dedicated neural networks, for universality it is necessary that

individuals are unable to affect the ability of the PN to

represent the cognitive capabilities of the population as a

whole.

For individuality, it was necessary for individual agents to

modify the same components of the PN in different ways.

Otherwise if agents interact with these components in the

same way, their behaviour would still be identical, unless the

PN changes independently of the agents. In contrast, the

theory of collective unconsciousness appears to indicate that

the global mechanism is a function of the individual

contributions to it, thus such an implementation is outside the

scope of this work..

The concept of individuality can be interpreted in strong

and weak versions. With the strong version, all agents could

be expected to behave significantly differently from each

other in every situation. With the weak version, all agents

could be expected to behave slightly differently from each

other in a single situation. Two agents would engage in

similar behaviour when two variables are similar: their input

perceptions; and the internal variables of the PN.

Consequently, internal cognitive state variables need to be

represented in agents that are input to the PN. Differences in

these cognitive state variables can guarantee individual

behaviour even by different agents in the same situation with

the same PN. By instantiating these variables with great

similarities or great differences, it is not infeasible that both

versions of individuality could be represented.

For simplicity, it was necessary for individual agents to

modify the PN as little as possible, due to the computational

expense required by the PN and the desired scalability in

population numbers. In such a context, even the simple task

of fetching the individual contributions from each agent in

memory become time consuming with complex PN and large

numbers of agents, so minimum processing incorporating this

contribution into the PN makes an appreciable difference

depending on the resources of the simulation machine.

Having elaborated our design criteria we now consider

interactions between the agents and the PN. We firstly

consider how agents will affect the PN then the way in which

the PN will, in turn, affect the agents. These proposed

interactions are examined with respect to our design criteria.

In order to represent individuality, agents are given private

cognitive state variables. We consider two types of variables,

world-variables, and PN-variables. These two types act as a

counterbalance to avoid both extreme versions of

individuality. World-variables relate the agent to the

environment. Since the environment varies itself, different

agent’s world variables are in different states, leading to

strong versions of individuality. On the other hand, PN-

variables allow agents to make small contributions to the

global mechanism. However, the global mechanism is

reasonably similar when different agents use it, leading to

weak versions of individuality. The architecture for our PN is

shown in

 Figure 1.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1502International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

 Figure 1: Population Network Architecture

With world-variables, agents require some internal state

that relates the world to the agent. From a philosophical point

of view, since goals exist in individuals, and goals relate

individuals to the world around them, we chose to represent

simple goals within each agent. Since goals are dynamic, and

the rate of their change can be dependent of the situations in

which agents find themselves, it is possible that two agents in

the same situation will have different goals. Since these goals

are input to the PN along with perceptual inputs, different

goals can produce individual behaviours.

With PN-variables, agents require unique and private

weights when the reasoning mechanism is a neural network.

Thus an individual’s weights can be similar, but non-identical,

to the weights of every other agent connected to the same PN.

In every agent, weights must correspond to exactly the same

connections, to maintain universality.

It is feasible for agents to submit their weights to the PN to

be processed in turn, overriding the previous weights in the

PN. However, such an approach means that agents are using a

global mechanism for processing only, rather than

contributing to a global consciousness that affects all agents.

Consequently, we allow the PN to have its own private

weights, but view each agent’s weights as individual

contributions to these global weights. When each agent is

connected to the PN, its contribution (offset) is summed with

the global weights for simplicity.

The PN must also affect the weight offsets of individual

agents, in order for agents to change with respect to the global

mechanism. Since the PN is an abstraction of individual

cognition, it was felt that whatever modifications were made

to the global mechanism after processing should be reflected

exactly in each individual. Thus it was necessary to design a

single update mechanism only to satisfy the criteria of

universality.

The way in which the PN changed was thus reflected

proportionately in the offsets of each individual agent. The

formula used is shown below: wO is the agent’s offset weight

which matches a specific neuron, W1 is the initial total weight

for the neuron and W2 is the weight after the PN has

completed processing.

Although every weight in every agent uses the same

formula to preserve universality, the agent offsets ripple-

through the PN such that each set of W2 will be unique for

every agent. Thus overall individuality is preserved, despite

using the same formula for every neuron. The formula was

implemented directly, which satisfies the criteria of simplicity

in a mathematical sense, having only four arithmetic

operations. While this formula could be further simplified to

reduce computation, we prioritised individuality over

simplicity in this instance, as the computational cost was

deemed acceptable given our system resources.

It is necessary to consider how our agents relate to

intelligent agents, in order to define the scope of our design.

In the field of intelligent agents, interaction between agents

and their world is categorised as either reactive or deliberative

(although there exists disagreement about the precise meaning

of these terms) [12]. We briefly describe these categories, and

attempt to position this work within.

Reactive agents interact with the world by attempting to

match their perceptions to stimulus-action pairs; if a match is

found the predefined action is executed. As such, reactive

agents simulate intelligent behaviour without the need for a

world model, internal state such as a goal model or memory,

or explicit reasoning capability [13].

 There are three main differences between our

architecture and a classical reactive agent. Firstly, our agents

are given simple internal cognitive states that are processed by

the PN in addition to inputs from the world. Secondly, rather

than attempting to match inputs (perception) to a stimulus-

response pair (eg. by searching in a lookup table), all inputs

are processed simultaneously by the PN. Thirdly, the neural

network basis does give agents an explicit representation that

allows learning, though it is clearly different from memory as

agents are unable to explicitly recall past events. Despite

these differences, our agents probably fall more strongly into

this category than deliberative agents, because agents do

attempt to represent a world model that they can reason upon.

Deliberative agents use an internal model of the world

and a representation of memory to reason about the effects of

its actions in order to select actions that it predicts will achieve

its goals. Its perceptions can be assessed in terms of a number

of explicitly represented and interacting components such as

memory, goals, beliefs, desires, intentions [14], [15]. Agents

use these components to construct plans that they

continuously evaluate and suspend or discontinue where

necessary.

 The major difference between our architecture and a

classical deliberative agent is that our agents make no plans

nor have any of the reasoning components for supporting

planning. The absence of these components means that one of

the primary advantages of reactive architectures can be

maintained: comparatively faster processing requirements

[16]. Where planning is critical to achieve optimal agent

behaviour, the current specification of our agents might be

unsuitable. However, it is outside the scope of this work to

consider planning since the theory of collective

unconsciousness does not mention it. At the least, the current

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1503International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

specification of our model appears to potentially allow the

incorporation of planning capability in our agents.

 In this section we described the design of our agent

architecture using a PN that satisfied our criteria. Our agents

can be categorised mainly as reactive, since they have no

internal world model, memory, or explicit reasoning

capability, and they map inputs directly to actions. However,

agents do have two sets of internal state variables: offset

weights to the neurons; and goal states, which are considered

alongside perceptual input. These internal state variables, in

conjunction with their offset modification (simulating

adaptation) mean that our agents belong to the deliberative

agent class to a small degree. We now discuss the

implementation of our agents in a predator-prey ecosystem.

III. IMPLEMENTATION

A simulation of a predator-prey ecosystem requires a

number of components to be represented. We briefly list

these components then justify their inclusion. Object-oriented

modelling was performed on these components, so that the

resulting modular implementation could be easily extended.

Seven components were required:

The world with which agents interact

The group attributes of each population (X2)

The individual attributes of each agent (X2)

The characteristics of features common to individuals in

both populations

The population network (PN)

The world with which agents interact was designed to

represent three features: time, space, and population tracking.

With time, it was necessary to schedule agents because only

one agent can interact with the PN at a time. In terms of the

populations, we decided that predator agents would all be

processed before prey agents, although it makes little

difference since all agents have access to the PN in one turn.

Within populations, we use round robin scheduling for

simplicity.

 With space, it is necessary for agent perceptions to be

localised for two reasons. Firstly, it is undesirable for all

agents to be able to perceive the entire state of the world

simultaneously, because then it means that all agents have

exactly the same inputs perceptions (global omniscience), thus

unnecessarily placing the responsibility for representing

individuality on the representation of internal state. More

importantly, the processing capability required for the entire

world-state, depending upon its complexity, could be well

beyond the resources of a machine. We used a homogenous

tile engine to graphically represent different terrain types,

where the various types of terrain related to agent goals.

 With population tracking, it is necessary to periodically

count and store population numbers, in order for changes in

population numbers to be compared. Population tracking

served only one purpose in the simulation, for evaluating the

accuracy of the predator-prey interactions. Population

numbers alone, while simple, are often critical in ecological

modelling.

The group attributes of each population were designed to

represent the relationship between populations with the world

and population relationships. The relationship between

populations with the world was interpreted in terms of

territory. With territory, populations would wander roughly

within a region of tiles; predators and prey meet conveniently

due to territory overlap.

The population relationships were interpreted in two ways:

each population had one dominant male and one dominant

female, and each population had scheduled mating seasons.

Dominant animals were given choice priority in various

collective behaviours. For example, where a group of lions

met a group of zebras, the unfortunate zebra that had been

selected by the dominant lion was also selected as a target by

all other lions.

With scheduled mating season, populations would, for a

certain number of turns, prioritise the goal of mating over

other goals. In the tile world, pairs of agents would move to

adjacent tiles and stay there for a time. At the end of the

season, agents would re-prioritise their goals to their original

states.

The individual attributes of each population represented

relationships between the individual agent and a number of

other agents including mate, offspring, food, and foes. With

the predator agents, food included the prey agents; with the

prey agents, its foes were the predator. We named the

predator population lions, and the prey population zebras,

because the agents and population relationships we had

constructed simulated a small number of features with these

complex real-life predators and prey.

The attributes of features common to individuals in both

populations include: a numerical id; food level, injury status,

speed, perceptual range, and gender. These attributes affect

the way in which the agents interact with the world, thus

changing the state of the world that the agents perceive. Some

of these attributes are directly input to the PN, under the

assumption that agents perceive their own internal state as

they perceive external state that can also be perceived by other

agents.

The PN used a Kohonen neural network, which was chosen

for two reasons. Firstly, a KNN is supposedly similar in

architecture to biological neural networks [3], [2]. Secondly,

this type of network learns in an unsupervised manner, placing

the responsibility of constructing relationships upon the

mechanism instead of on the designers. The PN had 70

Kohonen-layer neurons.; it took an hour to train on a dataset

consisting of 500 elements processed in 4000 iterations.

The PN has 7 input neurons; four were goal-state variables

and three were perceptual boolean variables. The four goal-

state variables were: hungry, thirsty, injury_level, and

ready_to_mate.. The three perceptual variables were:

predator-prey detected, mate detected and water detected. The

PN has four output variables; all output variables were

directional: go-to-water, go-to-food, go-to-mate and roam.

Once agents had moved on top of tiles that satisfied their

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1504International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

goals, they automatically proceeded to satisfy these goals.

Note that a lion does not instantaneously kill a zebra; they

inflicted damage, then as the zebra moves, the lion continues

to move towards the new tiles containing the zebra, either

until the kill was made, another zebra distracted the lion, or

the lion became too tired to continue.

 An object oriented analysis of our predator-prey

simulation requirements lead to the construction of seven

objects: World, Kohonen, Pride, Herd, Lion, Zebra and

Animal. For each of these objects, the simulation

requirements were interpreted in terms of attributes and

methods. The complete implementation class diagram for the

simulation is shown below in Figure 2. Note the similarities

and also the differences between attributes and methods to

reflect the predator-prey relationship.

Figure 2: Implementation Class Diagram

An example of interactions between the predators and prey

is shown below in Figure 3, where each picture shows a

subset of the tile-world (in this instance, all tiles are the same

type). In the top left diagram, two lions (on the far edges of

the screen), have detected a zebra, and the zebra has seen the

lion to its right. In the top right diagram, the zebra turns to

flee from the first lion, but is confronted by another lion. In

the bottom left diagram, the zebra has turned back again (one

emergent property of the simulation was confusion). In the

bottom right diagram, the zebra is now in the process of being

eaten by one lion who is about to be joined in their meal by

the other.

Figure 3: Predator’s closing

In this section we realised the design of our agent

architecture using a PN within the context of a predator-prey

ecosystem simulation. Agents are able to reason, taking into

consideration the external world and their internal states

without requiring an explicit world model. Agents are able to

learn without having an explicit learning mechanism. Once

the initial training of the PN is complete, the global cognitive

mechanism continues to learn without explicit representation

in the world. Based on our observation of behaviour, it does

appear that agents do interact with the world in different ways

some of the time, such that the requirement of individuality is

satisfied. We now discuss the evaluation of our predator-prey

ecosystem.

IV. EVALUATION

We evaluated two things: the scalability of representing

increasingly large populations using the PN; and the accuracy

of interactions in a predator-prey ecosystem. It is important to

investigate scalability because there are always upper bounds

that constrain how many members can be represented

simultaneously in a population. It is important to investigate

the accuracy of interactions because no model of cognition

exists to which the PN could be compared. Thus cognitive

models can only be investigated indirectly- via the interactions

of large numbers of agents using the PN.

The scalability of the PN was evaluated by measuring the

length of time it took for all of the agents to access the PN

once (all predators round-robin, then all prey). The machine

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1505International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

on which this with 512M RAM. The predator-prey ecosystem

was implemented in C++, running under the Gentoo Linux

operating system.

Population v Turn Time

0

0.5

1

1.5

2

25 75 12
5

17
5

22
5

27
5

32
5

37
5

42
5

T
im

e
 (

s
)

Figure 4: Single turn time for X agents

As shown above in

Figure 4, population numbers were increased in intervals of

25. Note that the population numbers were split 1:1 – for

X=100 there were 50 lions and 50 zebras. The graph shown is

reasonably linear, fitting the formula t = X - 325. We only

considered the length of processing time for one turn and did

not attempt to represent realistic interactions with such large

numbers, even though the tile-world could be flexibly

extended and modelled, due to a lack of information to which

these interactions could be compared and limited viewing

area. These experiments, at least, demonstrated that it was

possible to quickly compute reasonably large populations of

agents using the PN (in the order of a few hundred).

While no psychological mechanism exists to which our PN

can be compared, the interactions of the predator-prey

ecosystem (whose individuals use this PN) can be assessed.

Unfortunately, such an evaluation fails to evaluate the PN

directly; using another global mechanism instead of a PN

might be equally effective. The strongest claim that such an

evaluation allows us to make is that representing collective

unconsciousness using a neural network is similar to a simple

mathematical model, and thus such a representation may

potentially be useful in simulating artificial life.

Intuitively, interaction in a predator-prey ecosystem has two

components. Firstly, an increase in the number of prey can

support a larger population of predators by increasing the food

supply. Secondly, when the number of predators reaches a

certain size, they eat too many of the prey, thus the food

supply dwindles, thus only a small number of predators can be

supported because some predators starve to death (assuming

no other food supply). It is trivial to assess these interactions.

At particular intervals, the numbers of each population are

recorded and these numbers are plotted on a graph. Changes

in these numbers over time are due to births and deaths.

A number of mathematical models of predator-prey

interaction have been proposed; the simplest is the Lotka-

Volterra model which was developed independently by Lotka

(1925) and Volterra (1926) [7]: The model has been compared

to real predator-prey populations such as the arctic lynx and

snowshoe hare (whose numbers have been closely monitored

over a great length of time) and appears to be a surprisingly

accurate approximation.

The LVM equations consist of two interacting differential

equations: one for each species. In the equation shown below,

X = is the number of prey, Y = the number of predators, a =

the rate of prey population increase, b = predation rate

coefficient, c = reproduction rate of predators per single prey

eaten, and d = predator mortality rate.

Measurement was performed was an Intel Pentium 4 2.4

GHz

dYcXY
dt

dY

bXYaX
dt

dX

A graph of these equations is shown below in Figure 5,

where X = 60 initially, Y = 20 initially, a = 0.142, b =

0.00355, c = 0.00142, and d = 0.1065. These constants gave a

clear representation of the interactions in the predator-prey

ecosystem. The cyclic nature of the LVM perfectly matches

the way numbers should intuitively rise and fall.

Lotka-Volterra Model

0

50

100

150

200

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

Prey Predator

Figure 5: LVM predicted population numbers by steps

In order to compare LVM to agents using our PN, we

constructed a predator-prey simulation with the same initial

numbers as the LVM graph above, having 20 predators and 60

prey. The world we constructed for our agents consisted of

100*100 tiles. There was four tile rings: at the centre, water,

dirt, grass, and then water at the perimeter. Zebras tended to

stay close to the edges of the outer ring at the intersection of

water and grass. Those zebras that roamed towards the inner

edge of the grass occasionally became thirsty and crossed the

dirt to the central water source. If they were hungry as well

and did not make it back to the grass, the zebras could starve

to death. Since there were less zebras at the centre, more lions

in the centre also tended to starve more than lions on the

perimeter. Population numbers recorded in this simulation

were tracked and the resulting numbers are graphed below in

Figure 6.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1506International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

Simulation Results

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Prey Predator

Figure 6: Predator-prey numbers by turns

The similarities in these graphs were unexpected. The cycles of

interacting simulation population numbers seemed to follow the

LVM reasonably closely. On the other hand, the maximum numbers

of each population at their peak were inconstant. The reason for this

variance is possibly because the four constants used by the LVM

(a,b,c,d), are dynamic in an actual simulation, depending on a

number of factors. Unfortunately, no immediate pattern is

discernable in these peak changes, and further investigation is

required into how these constants are a function of the simulation

state. The LVM also makes two other assumptions that could

contribute to these differences: it assumes that prey only dies because

predators kill them; and that all individuals in each species behave

identically

 In this section we evaluated the scalability of representing

increasingly large populations using the PN; and the accuracy of

interactions in a predator-prey ecosystem. We found that it was

possible to compute a few hundred agents for one turn in around a

second. We also found that population numbers fit the cyclic pattern

of the Lotka-Volterra model of predator-prey interactions.

V. CONCLUSION

In this paper we described the design and implementation

of a common mechanism to represent the cognition of groups

of agents, based on Jung’s theory of collective

unconsciousness. We demonstrated that it was

computationally possible to process the simulated interactions

between hundreds of simple agents. We also demonstrated

that the simple predator-prey ecosystem we constructed had

similar population number oscillation to a predictive

mathematical model for these numbers.

 There are three main areas that are currently undergoing

investigation. Firstly, we are curious to discover how

particular terrain impacts the predator-prey interactions, since

terrain differences can be compared to the real world.

Secondly, we are experimenting both with different

contributions from each agent to the PN, and different

contributions back from the PN to each agent, to evaluate how

the PN and the agents are affected. Finally, we are developing

a component-based approach to constructing the PN, so that

different agents will use different neural network

combinations. It is hoped that such an arrangement will

produce class-based behavioural differentiation; agents with

the same components will demonstrate visibly similar

behaviour and agents with different components will

demonstrate visible behavioural differences.

 There are several areas in which this representation of

collective unconsciousness using neural networks could be

applied. Artificial life and ecological modelling typically

represent large populations of interacting agents that also

interact with the world around them. The need to train many

neural networks prior to simulation limited their application in

these fields. Many computer games also represent small

populations that engage in behaviour that approximates the

predator-prey relationship. Specific agent offsets could

represent non-playing characters at various levels of

experience.

REFERENCES

[1] J. R. B.Muller, "Neural Networks: An Introduction 2nd Edition,"

pp. 2-12, 1990.

[2] H. B. D. Martin T. Hagan, Mark H. Beale, Neural Network Design,

Paperback ed: Martin Hagan, 2002.

[3] R. Rogers, "Object-Oriented Neural Networks in C++," pp. 133-

171, 1997.

[4] C. G. Jung, "The Archetypes and the Collective Unconscious,"

Collected Works of C.G. Jung, vol. 9, pp. 87-110, 1980.

[5] B. MacLennan, "Evolutionary Neurotheology and the Varieties of

Religious Experience," in NeuroTheology: Brain, Science,

Spirituality, Religious Experience: University Press, California,

2002.

[6] R. Sun, "Individual Action and Collective Function: from

Sociology to Muli-Agent Learning," Cognitive Systems Research,

vol. 2, 2001.

[7] M. P. a. W. Mende, "The Predator-Prey Model, Do We Live in a

Volterra World?," pp. 3-15, 1986.

[8] Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra

Systems: World Scientific Publishing Company, 1996.

[9] D. H. Z. Guillermo Abramson, "Statistics of extinction and

survival in Lotka-Volterra systems," 1998.

[10] P. J. Morin, Community Ecology: Blackwell Publishers, 1999.

[11] J. H. E. R. M. Sibly, T. H. Clutton-Brock (Editor), Wildlife

Population Growth Rates: Cambridge University Press, 2003.

[12] M. Wooldridge and N. Jennings, "Intelligent Agents: Theory and

Practice," Knowledge Engineering Review, vol. 10, pp. 115-152,

1995.

[13] R. Brooks, "A robust layered control system for a mobile robot,"

IEEE Journal of Robotics and Automation, vol. RA-2, pp. 14-23,

1986.

[14] M. Bratman, Intention, Plans, and Practical Reason: Harvard

University Press, 1987.

[15] M. W. Ian Dickinson, "An Initial Response to the OAS’03

Challenge Problem," presented at Autonomous Agents and Multi-

Agent Systems (AAMAS-03), Melbourne, Australia, 2003.

[16] M. Namee and B. Cunningham, "A Proposal for an Agent

Architecture for Proactive Persistent Non Player Characters," TCD-

CS-2001-20, Trinity College Dublin, 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1507International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

28
6.

pd
f

