Search results for: Density of Electromagnetic Flow
3233 Flow Discharge Determination in Meandering Compound Channels Using Experimental Methods
Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Mohadeseh Kheradmand
Abstract:
Determining the flow discharge in meandering channels with a compound cross section is associated with problems due to the complex hydraulic structure of the flow in the meander belt, which can be attributed to different and ever-changing geometric shapes of the meander. This research paper intends to study the accuracy of several one-dimensional experimental methods in determining the flow discharge. To this end, the results of laboratory data related to four meandering compound channels have been used, and the accuracy of three important methods to determine the flow discharge have been checked in these channels.
Keywords: Flow discharge determination, meandering compound channel, compound section, meandering rivers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583232 CFD Modeling of a Radiator Axial Fan for Air Flow Distribution
Authors: S. Jain, Y. Deshpande
Abstract:
The fluid mechanics principle is used extensively in designing axial flow fans and their associated equipment. This paper presents a computational fluid dynamics (CFD) modeling of air flow distribution from a radiator axial flow fan used in an acid pump truck Tier4 (APT T4) Repower. This axial flow fan augments the transfer of heat from the engine mounted on the APT T4. CFD analysis was performed for an area weighted average static pressure difference at the inlet and outlet of the fan. Pressure contours, velocity vectors, and path lines were plotted for detailing the flow characteristics for different orientations of the fan blade. The results were then compared and verified against known theoretical observations and actual experimental data. This study shows that a CFD simulation can be very useful for predicting and understanding the flow distribution from a radiator fan for further research work.Keywords: Computational fluid dynamics (CFD), acid pump truck (APT) Tier4 Repower, axial flow fan, area weighted average static pressure difference, and contour plots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84963231 Numerical Analysis and Experimental Validation of Detector Pressure Housing Subject to HPHT
Authors: Hafeez Syed, Harit Naik
Abstract:
Reservoirs with high pressures and temperatures (HPHT) that were considered to be atypical in the past are now frequent targets for exploration. For downhole oilfield drilling tools and components, the temperature and pressure affect the mechanical strength. To address this issue, a finite element analysis (FEA) for 206.84 MPa (30 ksi) pressure and 165°C has been performed on the pressure housing of the measurement-while-drilling/logging-whiledrilling (MWD/LWD) density tool. The density tool is a MWD/LWD sensor that measures the density of the formation. One of the components of the density tool is the pressure housing that is positioned in the tool. The FEA results are compared with the experimental test performed on the pressure housing of the density tool. Past results show a close match between the numerical results and the experimental test. This FEA model can be used for extreme HPHT and ultra HPHT analyses, and/or optimal design changes.Keywords: FEA, HPHT, M/LWD, Oil & Gas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16423230 Experimental Study of the Pressure Drop after Fractal-Shaped Orifices in a Turbulent Flow Pipe
Authors: A. Abou El-Azm Aly, A. Chong, F. Nicolleau, S. Beck
Abstract:
The fractal-shaped orifices are assumed to have a significant effect on the pressure drop downstream pipe flow due to their edge self-similarity shape which enhances the mixing properties. Here, we investigate the pressure drop after these fractals using a digital micro-manometer at different stations downstream a turbulent flow pipe then a direct comparison has been made with the pressure drop measured from regular orifices with the same flow area. Our results showed that the fractal-shaped orifices have a significant effect on the pressure drop downstream the flow. Also the pressure drop measured across the fractal-shaped orifices is noticed to be lower that that from ordinary orifices of the same flow areas. This result could be important in designing piping systems from point of view of losses consideration with the same flow control area. This is promising to use the fractal-shaped orifices as flowmeters as they can sense the pressure drop across them accurately with minimum losses than the regular ones.Keywords: Fractal-shaped orifice, pressure drop, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18923229 On the Characteristics of Liquid Explosive Dispersing Flow
Authors: Lei Li, Xiaobing Ren, Xiaoxia Lu, Xiaofang Yan
Abstract:
In this paper, some experiments of liquid dispersion flow driven by explosion in vertical plane were carried out using a liquid explosive dispersion device with film cylindrical constraints. The separated time series describing the breakup shape and dispersion process of liquid were recorded with high speed CMOS camera. The experimental results were analyzed and some essential characteristics of liquid dispersing flow are presented.
Keywords: Explosive Disseminations, liquid dispersion Flow, Cavitations, Gasification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18103228 Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms
Authors: D.Toghraie, A.R.Azimian
Abstract:
Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.Keywords: Lennard-Jones Potential, Molecular DynamicsSimulation, Periodic Boundary Conditions (PBC), Non-EquilibriumMolecular Dynamics (NEMD), Annular Flow Boiling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21853227 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution
Authors: A. Amar
Abstract:
A new model namely, the crystal model, has been modified to calculate radius and density distribution of light nuclei up to 8Be. The crystal model has been modified according to solid state physics which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has been obtained from the analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in general form. The equation used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in 6Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+6,7Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both radius and density distribution of light nuclei. The model failed to calculate the radius of 9Be, so modifications should be done to overcome discrepancy.
Keywords: nuclear lattice, crystal model, light nuclei, nuclear density distributions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4313226 Linear-Operator Formalism in the Analysis of Omega Planar Layered Waveguides
Authors: António L. Topa
Abstract:
A complete spectral representation for the electromagnetic field of planar multilayered waveguides inhomogeneously filled with omega media is presented. The problem of guided electromagnetic propagation is reduced to an eigenvalue equation related to a 2 ´ 2 matrix differential operator. Using the concept of adjoint waveguide, general bi-orthogonality relations for the hybrid modes (either from the discrete or from the continuous spectrum) are derived. For the special case of homogeneous layers the linear operator formalism is reduced to a simple 2 ´ 2 coupling matrix eigenvalue problem. Finally, as an example of application, the surface and the radiation modes of a grounded omega slab waveguide are analyzed.Keywords: Metamaterials, linear operators, omega media, layered waveguide, orthogonality relations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19553225 The Effect of Breaststroke Swimming Exercise to Increase the Value of Peak Expiratory Flow
Authors: Sri Sumartiningsih, Anies Setiowati
Abstract:
The purpose of this study is to investigate the influence of breaststroke swimming exercise to improving the peak expiratory flow. Methode: This study used 17 students of men aged 19-21 years, APE values measured before and after the study. Style swimming workout done in accordance with a program that has been made. Result: Value of peak expiratory flow in male students obtained on average before exercise (530 ± 15 811) liters / min and after doing the exercises (540.59 ± 17 092) liters / minute. Paired ttest showed t = -6.446 and p = 0.000, which means there are differences in peak expiratory flow values before and after exercise swimming breaststroke. Conclusion: The conclusion is the breaststroke swimming exercise can be improving of peak expiratory flow.
Keywords: Breaststroke, peak expiratory flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25743224 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method
Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi
Abstract:
The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.
Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8883223 Conducting Flow Measurement Laboratory Test Work
Authors: M. B. Kime
Abstract:
Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.
Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49443222 Load Flow Analysis: An Overview
Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose
Abstract:
The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.
Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68583221 Simulation of Internal Flow Field of Pitot-Tube Jet Pump
Authors: Iqra Noor, Ihtzaz Qamar
Abstract:
Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.
Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7563220 Numerical Study of Flow Separation Control over a NACA2415 Airfoil
Authors: M. Tahar Bouzaher
Abstract:
This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.
Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29993219 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop
Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy
Abstract:
In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36973218 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem
Authors: Ahmad Rabanimotlagh
Abstract:
In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24213217 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel
Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun
Abstract:
The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.
Keywords: Experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10243216 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.
Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15023215 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17203214 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows
Authors: F. A. Hamad, S. He
Abstract:
In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21853213 Effect of Stocking Density on Monosex Nile Tilapia Growth during Pond Culture in India
Authors: Suman B. Chakraborty, Samir Banerjee
Abstract:
Stocking density is considered one of the important factors affecting fish growth. But, information related to impact of stocking density on growth performance of monosex tilapia population under the ecological conditions of Gangetic plains in West Bengal, India is limited. The aim of our study was to compare the growth potential of monosex tilapia at various stocking densities and to determine an ideal stocking density for culture of all-male monosex fish. The males were isolated by examination of genital papilla region and were stocked separately in 0.01 ha earthen ponds at different stocking densities (5000, 10000, 15000, 20000, 25000 and 30000 fingerlings/ha). It was found that the highest weight, length, daily weight gain, growth rate and protein content were observed for the 20000 fish/ha density class. Thus, culture of monosex tilapia at a density of 20000 fish/ha can be considered ideal for augmented production of the fish under Indian context.Keywords: Growth potential, Nile tilapia, Pond culture, Stockingdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58603212 A Reliable FPGA-based Real-time Optical-flow Estimation
Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad
Abstract:
Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.Keywords: Optical flow, motion detection, real-time systems, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17443211 Influence of Vortex Generator on Flow Behavior of Air Stream
Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan
Abstract:
This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.
Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22263210 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow
Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius
Abstract:
The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22033209 Open Channel Flow Measurement of Water by Using Width Contraction
Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan
Abstract:
Present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1 and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.Keywords: Flowrate, flowmeter, open channels, submergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23243208 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25233207 Threshold Submergence of Flow over PK Weirs
Authors: A. Javaheri, A. R. Kabiri-Samani
Abstract:
In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21833206 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31423205 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.
Keywords: Corrugated absorber, double flow, exergy efficiency, solar air heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9393204 A Comparison between Heterogeneous and Homogeneous Gas Flow Model in Slurry Bubble Column Reactor for Direct Synthesis of DME
Authors: Sadegh Papari, Mohammad Kazemeini, Moslem Fattahi
Abstract:
In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimisation of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, using a churn-turbulent regime was developed. In the heterogeneous gas flow model the gas phase was distributed into two bubble phases: small and large, however in the homogeneous one, the gas phase was distributed into only one large bubble phase. The results indicated that the heterogeneous gas flow model was in more agreement with experimental pilot plant data than the homogeneous one.Keywords: Modelling, Slurry bubble column, Dimethyl ether synthesis, Homogeneous gas flow, Heterogeneous gas flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169