Search results for: degree of accuracy
566 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: Remote monitoring, non-destructive testing, embedded linux system, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966565 Simplified 3R2C Building Thermal Network Model: A Case Study
Authors: S. M. Mahbobur Rahman
Abstract:
Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control. Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.
Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230564 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices
Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara
Abstract:
Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.Keywords: Turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160563 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010562 Awareness and Attitudes of Primary Grade Teachers (1-4thGrade) towards Inclusive Education
Authors: P. Maheshwari, M. Shapurkar
Abstract:
The present research aimed at studying the awareness and attitudes of teachers towards inclusive education. The sample consisted of 60 teachers, teaching in the primary section (1st – 4th) of regular schools affiliated to the SSC board in Mumbai. Sample was selected by Multi-stage cluster sampling technique. A semi-structured self-constructed interview schedule and a self-constructed attitude scale was used to study the awareness of teachers about disability and Inclusive education, and their attitudes towards inclusive education respectively. Themes were extracted from the interview data and quantitative data was analyzed using SPSS package. Results revealed that teachers had some amount of awareness but an inadequate amount of information on disabilities and inclusive education. Disability to most (37) teachers meant “an inability to do something”. The difference between disability and handicap was stated by most as former being cognitive while handicap being physical in nature. With regard to Inclusive education, a large number (46) stated that they were unaware of the term and did not know what it meant. Majority (52) of them perceived maximum challenges for themselves in an inclusive set up, and emphasized on the role of teacher training courses in the area of providing knowledge (49) and training in teaching methodology (53). Although, 83.3% of teachers held a moderately positive attitude towards inclusive education, a large percentage (61.6%) of participants felt that being in inclusive set up would be very challenging for both children with special needs and without special needs. Though, most (49) of the teachers stated that children with special needs should be educated in regular classroom but they further clarified that only those should be in a regular classroom who have physical impairments of mild or moderate degree.
Keywords: Attitudes, awareness, inclusive education, teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396561 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka
Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake
Abstract:
Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.
Keywords: AFT model, first employment, proportional hazard, survey design, waiting time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120560 Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding
Authors: Andy Tirta, Yus Prasetyo, Eung-Ryul. Baek, Chul-Jin. Choi , Hye-Moon. Lee
Abstract:
Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part.Keywords: Micromanufacturing, Nano PIM, PDMS micro mould.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062559 Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements
Authors: Jixiao Tao, Xiaoqiao He
Abstract:
The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman’s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements.
Keywords: Finite element method, geometrical nonlinearity, bistable, quadrilateral plate elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788558 A New Traffic Pattern Matching for DDoS Traceback Using Independent Component Analysis
Authors: Yuji Waizumi, Tohru Sato, Yoshiaki Nemoto
Abstract:
Recently, Denial of Service(DoS) attacks and Distributed DoS(DDoS) attacks which are stronger form of DoS attacks from plural hosts have become security threats on the Internet. It is important to identify the attack source and to block attack traffic as one of the measures against these attacks. In general, it is difficult to identify them because information about the attack source is falsified. Therefore a method of identifying the attack source by tracing the route of the attack traffic is necessary. A traceback method which uses traffic patterns, using changes in the number of packets over time as criteria for the attack traceback has been proposed. The traceback method using the traffic patterns can trace the attack by matching the shapes of input traffic patterns and the shape of output traffic pattern observed at a network branch point such as a router. The traffic pattern is a shapes of traffic and unfalsifiable information. The proposed trace methods proposed till date cannot obtain enough tracing accuracy, because they directly use traffic patterns which are influenced by non-attack traffics. In this paper, a new traffic pattern matching method using Independent Component Analysis(ICA) is proposed.
Keywords: Distributed Denial of Service, Independent Component Analysis, Traffic pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772557 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493556 Evaluation of State of the Art IDS Message Exchange Protocols
Authors: Robert Koch, Mario Golling, Gabi Dreo
Abstract:
During the last couple of years, the degree of dependence on IT systems has reached a dimension nobody imagined to be possible 10 years ago. The increased usage of mobile devices (e.g., smart phones), wireless sensor networks and embedded devices (Internet of Things) are only some examples of the dependency of modern societies on cyber space. At the same time, the complexity of IT applications, e.g., because of the increasing use of cloud computing, is rising continuously. Along with this, the threats to IT security have increased both quantitatively and qualitatively, as recent examples like STUXNET or the supposed cyber attack on Illinois water system are proofing impressively. Once isolated control systems are nowadays often publicly available - a fact that has never been intended by the developers. Threats to IT systems don’t care about areas of responsibility. Especially with regard to Cyber Warfare, IT threats are no longer limited to company or industry boundaries, administrative jurisdictions or state boundaries. One of the important countermeasures is increased cooperation among the participants especially in the field of Cyber Defence. Besides political and legal challenges, there are technical ones as well. A better, at least partially automated exchange of information is essential to (i) enable sophisticated situational awareness and to (ii) counter the attacker in a coordinated way. Therefore, this publication performs an evaluation of state of the art Intrusion Detection Message Exchange protocols in order to guarantee a secure information exchange between different entities.
Keywords: Cyber Defence, Cyber Warfare, Intrusion Detection Information Exchange, Early Warning Systems, Joint Intrusion Detection, Cyber Conflict
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293555 A Simplified and Effective Algorithm Used to Mine Similar Processes: An Illustrated Example
Authors: Min-Hsun Kuo, Yun-Shiow Chen
Abstract:
The running logs of a process hold valuable information about its executed activity behavior and generated activity logic structure. Theses informative logs can be extracted, analyzed and utilized to improve the efficiencies of the process's execution and conduction. One of the techniques used to accomplish the process improvement is called as process mining. To mine similar processes is such an improvement mission in process mining. Rather than directly mining similar processes using a single comparing coefficient or a complicate fitness function, this paper presents a simplified heuristic process mining algorithm with two similarity comparisons that are able to relatively conform the activity logic sequences (traces) of mining processes with those of a normalized (regularized) one. The relative process conformance is to find which of the mining processes match the required activity sequences and relationships, further for necessary and sufficient applications of the mined processes to process improvements. One similarity presented is defined by the relationships in terms of the number of similar activity sequences existing in different processes; another similarity expresses the degree of the similar (identical) activity sequences among the conforming processes. Since these two similarities are with respect to certain typical behavior (activity sequences) occurred in an entire process, the common problems, such as the inappropriateness of an absolute comparison and the incapability of an intrinsic information elicitation, which are often appeared in other process conforming techniques, can be solved by the relative process comparison presented in this paper. To demonstrate the potentiality of the proposed algorithm, a numerical example is illustrated.Keywords: process mining, process similarity, artificial intelligence, process conformance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443554 A Descriptive Study on Psychiatric Morbidity among Nurses Working in Selected Hospitals of Udupi and Mangalore Districts Karnataka, India
Authors: Tessy Treesa Jose, Sripathy M. Bhat
Abstract:
Nursing is recognized as a stressful occupation and has indicated a probable high prevalence of distress. It is a helping profession requiring a high degree of commitment and involvement. If stress is intense, continuous and repeated, it becomes a negative phenomenon or "distress," which can lead to physical illness and psychological disorders. The frequency of common psychosomatic symptoms including sleeping problems, tension headache, chronic fatigue, palpitation etc. may be an indicator of nurses’ work-related stress level. Objectives of the study were to determine psychiatric morbidity among nurses and to find its association with selected variables. The study population consisted of 1040 registered nurses working in selected medical college hospitals and government hospitals of Udupi and Mangalore districts. Descriptive survey design was used to conduct the study. Subjects were selected by using purposive sampling. Data were gathered by administering background proforma and General Health questionnaire. Severe distress was experienced by 0.9% of nurses and 5.6% had some evidence of distress. Subjects who did not have any distress were 93.5%. No significant association between psychiatric morbidity in nurses and demographic variables was observed. With regard to work variables significant association is observed between psychiatric morbidity and total years of experience (z=10.67, p=0.03) and experience in current area of work (z=9.43, p=0.02).Keywords: Psychiatric morbidity, nurse, selected hospitals, working.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224553 Improved Feature Processing for Iris Biometric Authentication System
Authors: Somnath Dey, Debasis Samanta
Abstract:
Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature processing is an important task. In feature processing, we extract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature extraction and feature matching process. We apply Daubechies D4 wavelet with 4 levels to extract features from iris images. These features are encoded with 2 bits by quantizing into 4 quantization levels. With our proposed approach it is possible to represent an iris template with only 304 bits, whereas existing approaches require as many as 1024 bits. In addition, we assign different weights to different iris region to compare two iris templates which significantly increases the accuracy. Further, we match the iris template based on a weighted similarity measure. Experimental results on several iris databases substantiate the efficacy of our approach.Keywords: Iris recognition, biometric, feature processing, patternrecognition, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139552 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.
Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586551 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements
Authors: K. Sandjak, B. Tiliouine
Abstract:
This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.
Keywords: Infinite elements, 3-D numerical investigation, asphalt pavements, dual and wide base tires.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715550 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.
Keywords: Air bubbles, CFD simulation, jet pump, practical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018549 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.
Keywords: Moving object detection, histogram of oriented gradient histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233548 Study on a Nested Cartesian Grid Method
Authors: Yih-Ferng Peng
Abstract:
In this paper, the local grid refinement is focused by using a nested grid technique. The Cartesian grid numerical method is developed for simulating unsteady, viscous, incompressible flows with complex immersed boundaries. A finite volume method is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a nested grid solver are imposition of interface conditions on the inter-block and accurate discretization of the governing equation in cells that are with the inter-block as a control surface. A new interpolation procedure is presented which allows systematic development of a spatial discretization scheme that preserves the spatial accuracy of the underlying solver. The present nested grid method has been tested by two numerical examples to examine its performance in the two dimensional problems. The numerical examples include flow past a circular cylinder symmetrically installed in a Channel and flow past two circular cylinders with different diameters. From the numerical experiments, the ability of the solver to simulate flows with complicated immersed boundaries is demonstrated and the nested grid approach can efficiently speed up the numerical solutions.Keywords: local grid refinement, Cartesian grid, nested grid, fractional-step method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562547 Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy
Authors: Shaoyan Sun, Liwei Zhang, Chonghui Guo
Abstract:
As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.
Keywords: Multimodality images, image registration, Shannonentropy, Tsallis entropy, mutual information, Powell optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635546 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.
Keywords: Efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921545 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399544 Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey
Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu
Abstract:
In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12; Mauremys rivulata = 14; Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. A total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The multiple antibiotic resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.
Keywords: Amphibian, Bacteriological Quality, Reptile, Antibiotic & Heavy Metal Resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246543 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.
Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540542 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.
Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660541 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778540 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes
Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari
Abstract:
The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.
Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045539 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.
Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3545538 On the Parameter Optimization of Fuzzy Inference Systems
Authors: Erika Martinez Ramirez, Rene V. Mayorga
Abstract:
Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984537 Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems
Authors: Ismail Algelli Sassi Ehtiwesh, Željko Đurović
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.Keywords: Electro-hydraulic systems, PID, Neural network controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839