Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey
Authors: Nurcihan Hacioglu, Cigdem Gul, Murat Tosunoglu
Abstract:
In this article, the antibiogram and heavy metal resistance profile of the bacteria isolated from total 34 studied animals (Pelophylax ridibundus = 12; Mauremys rivulata = 14; Natrix natrix = 8) captured around the Biga Stream, are described. There was no database information on antibiogram and heavy metal resistance profile of bacteria from these area’s amphibians and reptiles. A total of 200 bacteria were successfully isolated from cloaca and oral samples of the aquatic amphibians and reptiles as well as from the water sample. According to Jaccard’s similarity index, the degree of similarity in the bacterial flora was quite high among the amphibian and reptile species under examination, whereas it was different from the bacterial diversity in the water sample. The most frequent isolates were A. hydrophila (31.5%), B. pseudomallei (8.5%), and C. freundii (7%). The total numbers of bacteria obtained were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M. rivulata, and 80 in the water sample. The result showed that cefmetazole was the most effective antibiotic to control the bacteria isolated in this study and that approximately 93.33% of the bacterial isolates were sensitive to this antibiotic. The multiple antibiotic resistances (MAR) index indicated that P. ridibundus (0.95) > N. natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial isolates at different rates. Therefore, it indicated that the water source of the animals was contaminated with both antibiotic residues and heavy metals.
Keywords: Amphibian, Bacteriological Quality, Reptile, Antibiotic & Heavy Metal Resistance.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100709
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254References:
[1] G. Blanco, J. A. Lemus, J. Grande, L. Gangoso, J. M. Grande, J. A. Donázar, B. Arroyo, O. Frías, and F. Hiraldo, Geographical variation in cloacal microflora and bacterial antibiotic resistance in a threatened avian scavenger in relation to diet and livestock farming practices. Environ. Microb., vol. 9, no. 7, 2007, pp. 1738–1749.
[2] M. A. Mitchell, and S. M. Shane, Salmonella in Reptiles. Semin. Avian Exo. Pet., vol. 10, no. 1, 2001, pp. 25-35.
[3] M. Corrento, A. Madio, K. G. Friedrich, G. Greco, C. Desario, S. Tagliabue, M. D’Incau, M. Campolo, and C. Buonavoglia, Isolation of Salmonella Strains from reptile faeces and comparison of different culture media, J. Appl. Microbiol., vol. 96, 2004, pp. 709-715.
[4] L. B. Kobolkuti, G. A. Czirjak, M. Tenk, A. Szakacs, A. Kelemen, and M. Spinu, Edwardsiella tarda associated subcutenous abscesses in a captive grass snake (Natrix natrix, Squamata:Colubridae). J Fac Vet Med, vol.19, no. 6, 2013, pp. 1061-1063.
[5] M. Santoro, G. Hernandez, M. Caballero, and F. Garcia, Aerobic Bacterial Flora of Nesting Green Turtles (Chelonia mydas) from Tortuguero National Park, Costa Rica. J. Zoo Wildl. Med., vol. 37, no. 4, 2006, pp. 549-552.
[6] C. L. Densmore, and D. E. Green, Diseases of Amphibians. ILAR Journal, vol. 48, no. 3, 2007, pp. 235-254.
[7] V. Schmidt, R. Mock, E. Burgkhardt, A. Junghanns, F. Ortlieb, I. Szabo, R. Marschang, I. Blindow, and M. E. Krautwald-Junghanns, Cloacal aerobic bacterial flora and absence of viruses in free-living Slow Worms (Anguis fragilis), Grass Snakes (Natrix natrix) and European Adders (Vipera berus) from Germany. EcoHealth, 2014, DOI: 10.1007/s10393- 014-0947-6.
[8] M. Schröter, P. Roggentin, J. Hofmann, A. Speicher, R. Laufs, and D. Mack, Pet snakes as a reservoir for Salmonella enterica subsp. Diarizonae (Serogroup IIIb): a prospective study. Appl. Environ. Microbiol., vol. 70, 2004, pp. 613-615.
[9] L. W. Tee, and M. Najiah, Antibiogram and heavy metal tolerance of Bullfrog Bacteria in Malaysia. Open Vet. J., vol. 1, 2011, pp. 39-45.
[10] P.R. Murray, E. J. Baron, M.A. Pfaller, F.C. Tenover, and R.H. Yolken, Manual of clinical microbiology (7thed.). Washington, D.C.: American Society for Microbiology. 1999.
[11] A. E. Magurran, Ecological Diversity and Its Measurement. Princeton, NJ, USA: Princeton University Press. 1988.
[12] Ø. Hammer, D. A. T. Harper, and P. D. Ryan, PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron., vol. 4, no. 1, 2001, pp. 9.
[13] R. Real, M. Vargasj, and O. C. Guerrrerj Análisis biogeográfico de clasificación de áreas y de especies. In: Objetivos y métodos biogeográfiC OSA. plicaciones en Herpetología. Monogr. Herpetol., vol. 2, 1992, pp. 73-84 (J. M. Vargas, R. Real & A. Antúnez, Eds.). Asociación Herpetológica Española, Valencia.
[14] A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic susceptibility testing by a standardized single-disk method. Am. J. Clin. Pathol., vol. 45, 1966, pp. 493–496.
[15] Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests. NCCLS Document M2-A7. National Committee for Clinical Laboratory Standards, 27(1), Wayne, 2009.
[16] F. Matyar, O. Gulnaz, G. Guzeldag, H. A. Mercimek, S. Akturk, A. Arkut, and M. Sumengen, Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Ann Microbiol, vol. 64, 2014, pp. 1033–1040.
[17] P. H. Krumpermann, Multiple antibiotic resistances indexing of E. coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol., vol. 46, no. 1, 1983, pp. 165–170.
[18] N. Hacioglu, B. Dulger, T. Çaprazlı, and M.Tosunoglu, A Study on microflora in oral and cloacal of freshwater turtles (Emys orbicularis Linnaeus, 1758 and Mauremys rivulata Valenciennes, 1833) from Kavak Delta (CANAKKALE). Fresen. Environ. Bull., vol. 21, no. 11b, 2012, pp. 3365-3369.
[19] N. Hacioglu, and M. Tosunoglu, Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species. Environ. Monit. Assess., vol. 186, 2014, pp. 407-413.
[20] M. Najiah, S.W. Lee, and K.L. Lee, Phenotypic characterization and numerical analysis of Edwardsiella tarda in wild Asian Swamp Eel, Monopterus albus in Terengganu. J. Sustainable Manage, vol. 1, no. 1, 2006, pp. 85-91.
[21] C.J. Gonzalez, J.P. Encinas, M.L. Garcia-Lopez, and A. Otero, Characterization and identification of lactic acid bacteria from freshwater fishes, Food Microbiol, vol. 17, 2000, pp. 383-391.
[22] E.J. Goldstein, E.O. Agyare, A.E. Vagvolgyi, and M. Halpern, Aerobic bacterial oral flora of garter snakes: Development of normal flora and pathogenic potential for snakes and humans. J. Clin. Microbiol., vol.13, no.5, 1981, pp. 954-956.
[23] C.Soccini, and V. Ferri, Bacteriological of Trachemys scripta elegans and Emys orbicularis in the Pop plain (Italy). Biologia, Bratislava, vol. 59/Suppl., no.14, 2004, pp. 201-207.
[24] S.W. Lee, M. Najiah, W. Wendy, M. Nadirah, and S.H. Faizah, Occurence of heavy metals and antibiotic resistance in bacteria from intestinal organs of American bullfrog (Rana catesbeiana) raised in Malaysia. J. Venom Anim. Toxins including Tropical Diseases, vol. 15, no. 2, 2009, pp. 353–358.
[25] D.H. Nies, Microbial heavy metal resistance. Appl. Microbiol. Biotech, vol. 51, 1999, pp. 730–750.