**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30835

##### A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

**Authors:**
Adriano Z. Zambom,
Preethi Ravikumar

**Abstract:**

**Keywords:**
residuals,
mean square error,
variable selection,
Additive models,
local polynomial regression

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1129205

**References:**

[1] R. L. Eubank, Nonparametric Regression and Spline Smoothing, Statistics: A Series of Textbooks and Monographs, 1999.

[2] P. J. Green and B.W. Silverman, Nonparametric Regression and Generalized Linear Models: A roughness penalty approach, Chapman & Hall, 1994.

[3] S. Efromovich, Nonparametric Curve Estimation: Methods, Theory, and Applications, Springer Series in Statistics, 1999.

[4] D. Ruppert, M. P. Wand, U. Holst and O. Hssjer, Local Polynomial Variance-Function Estimation, Technometrics, 39, pp. 262-273, 1997.

[5] R. T. Rust, Flexible Regression, Journal of Marketing Research, 25, pp. 10-24, 1988.

[6] S. Durrleman and R. Simon, Flexible regression models with cubic splines, 8, pp. 551-561, 1989.

[7] C. J. Stone, Additive Regression and Other Nonparametric Models,The Annals of Statistics, 13, pp. 689-705, 1985.

[8] D. L. Donoho, High-dimensional data analysis: The curses and blessings of dimensionality, AMS Conference on Math and Challenges of the 21st Century.

[9] W. Hardle and E. Mammen, Comparing Nonparametric Versus Parametric Regression Fits, The Annals of Statistics, 21, 1926-1947, 1993.

[10] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd Edition, Wiley.

[11] G. A. Davis and N. L. Nihan, Nonparametric Regression and Short-Term Freeway Traffic Forecasting, Journal of Transportation Engineering, 117, 1991.

[12] J. G. Staniswalis and J.J. Lee, Nonparametric Regression Analysis of Longitudinal Data, Journal of the American Statistical Association, 93, pp. 1403-1418, 1998.

[13] P. Constans and J.D. Hirst, Nonparametric Regression Applied to Quantitative Structure Activity Relationships, Journal of Chemical Information and Modeling, 40, pp 452-459, 2000.

[14] J. Qiu, H. Wang, D. Lin and B. He, Nonparametric regression-based failure rate model for electric power equipment using lifecycle data, Transmission and Distribution Conference and Exposition (T&D), 2016 IEEE/PES.

[15] E. A. Nadaraya, On Estimating Regression, Theory of Probability and its Applications, 9, pp. 141-142, 1964.

[16] G. S. Watson, Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 26, 359-372, 1964.

[17] W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 829-836, 1979.

[18] W. S. Cleveland, LOWESS: A program for smoothing scatterplots by robust locally weighted regression, The American Statistician, 35, 1981.

[19] M. P. Wand and M.C Jones, Kernel Smoothing, Chapman & Hall, 1995.

[20] Fan, J. and Gijbels, I, Local Polynomial Modelling and its Applications, Boca Raton: Chapman and Hall, 1996.

[21] E. Masry, Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consistency and Rates, Journal of Time Series Analysis, 17, pp. 571-599, 1996.

[22] D. Ruppert and M.P.. Wand, Multivariate Locally Weighted Least Squares Regression, The Annals of Statistics, 22, pp. 1346-1370, 1994.

[23] J. H. Friedman and W. Stuetzle, Projection Pursuit Regression, Journal of the American Statistical Association, 76, 817-823, 1981.

[24] T. J. Hastie and R.J. Tibshirani, Generalized Additive Models, Chapman & Hall, 1990.

[25] A. Buja, T. Hastie and R.Tibshirani, Linear Smoothers and Additive Models, The Annals of Statistics, 17, 453-555, 1989.

[26] J.D. Opsomer, Asymptotic Properties of Backfitting Estimators, Journal of Multivariate Analysis, 73, 166-179, 2000.

[27] C. M. Hurvich, J. S. Simonoff and C.-L. Tsai, Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion, Journal of the Royal Statistical Society. Series B, 60, pp. 271-293, 1998.

[28] Boston Housing Dataset, available at https://archive.ics.uci.edu/ml/datasets/Housing.