Search results for: product design.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5750

Search results for: product design.

3770 The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process

Authors: Yang Laixia, Deng Jun, Li Dichen, Bai Yang

Abstract:

The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.

Keywords: Analytic Hierarchy Process, Multi-objective optimization, Orthogonal test, Selective Laser Sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
3769 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses

Authors: Neil Bar, Andrew Heweston

Abstract:

Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.

Keywords: Probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
3768 Mechanical Design and Theoretical Analysis of a Skip-Cycle Mechanism for an Internal Combustion Engine

Authors: Ismail Gerzeli, Cemal Baykara, Osman Akin Kutlar

Abstract:

Skip cycle is a working strategy for spark ignition engines, which allows changing the effective stroke of an engine through skipping some of the four stroke cycles. This study proposes a new mechanism to achieve the desired skip-cycle strategy for internal combustion engines. The air and fuel leakage, which occurs through the gas exchange, negatively affects the efficiency of the engine at high speeds and loads. An absolute sealing is assured by direct use of poppet valves, which are kept in fully closed position during the skipped mode. All the components of the mechanism were designed according to the real dimensions of the Anadolu Motor's gasoline engine and modeled in 3D by means of CAD software. As the mechanism operates in two modes, two dynamically equivalent models are established to obtain the force and strength analysis for critical components.

Keywords: Dynamic Model, Mechanical Design, Skip Cycle System (SCS), Valve Disabling Mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
3767 Thermodynamic Analysis of R507A-R23 Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor

Abstract:

The present work deals with thermodynamic analysis of cascade refrigeration system using ozone friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable and as R507A an azeotropic mixture there is no problem of temperature glide. This study thermodynamically analyzed R507A-R23 cascade refrigeration system to optimize the design and operating parameters of the system. The design and operating parameters include: Condensing, evaporating, subcooling and superheating temperatures in the high temperature circuit, temperature difference in the cascade heat exchanger, Condensing, evaporating, subcooling and superheating temperatures in the low temperature circuit.

Keywords: COP, R507A, R23, cascade refrigeration system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
3766 Simulation Aided Life Cycle Sustainability Assessment Framework for Manufacturing Design and Management

Authors: Mijoh A. Gbededo, Kapila Liyanage, Ilias Oraifige

Abstract:

Decision making for sustainable manufacturing design and management requires critical considerations due to the complexity and partly conflicting issues of economic, social and environmental factors. Although there are tools capable of assessing the combination of one or two of the sustainability factors, the frameworks have not adequately integrated all the three factors. Case study and review of existing simulation applications also shows the approach lacks integration of the sustainability factors. In this paper we discussed the development of a simulation based framework for support of a holistic assessment of sustainable manufacturing design and management. To achieve this, a strategic approach is introduced to investigate the strengths and weaknesses of the existing decision supporting tools. Investigation reveals that Discrete Event Simulation (DES) can serve as a rock base for other Life Cycle Analysis frameworks. Simio-DES application optimizes systems for both economic and competitive advantage, Granta CES EduPack and SimaPro collate data for Material Flow Analysis and environmental Life Cycle Assessment, while social and stakeholders’ analysis is supported by Analytical Hierarchy Process, a Multi-Criteria Decision Analysis method. Such a common and integrated framework creates a platform for companies to build a computer simulation model of a real system and assess the impact of alternative solutions before implementing a chosen solution.

Keywords: Discrete event simulation, life cycle sustainability analysis, manufacturing, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
3765 Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

Authors: Waraporn Apiwatanapiwat, Pilanee Vaithanomsat, Phanu Somkliang, Taweesiri Malapant

Abstract:

This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reaction was controlled at temperature 50 °C in water bath for 45 minutes. After that, the supernatant (protein hydrolysate) was separated using centrifuge at 8000g for 30 minutes. The maximum yield of resulting protein hydrolysate was 73.27 % with 7.34% moisture, 71.69% total protein, 7.12% lipid, 2.49% ash. The product was also capable of well dissolving in water.

Keywords: Production, protein hydrolysate, Jatropha curcas cake, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
3764 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

Authors: E T. Rakgati, E. Matlotse

Abstract:

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
3763 Identification of the Key Sustainability Issues to Develop New Decision Support Tools in the Spanish Furniture Sector

Authors: P.Cordero, R.Poler, R.Sanchis

Abstract:

The environmental impacts caused by the current production and consumption models, together with the impact that the current economic crisis, bring necessary changes in the European industry toward new business models based on sustainability issues that could allow them to innovate and improve their competitiveness. This paper analyzes the key environmental issues and the current and future market trends in one of the most important industrial sectors in Spain, the furniture sector. It also proposes new decision support tools -diagnostic kit, roadmap and guidelines- to guide companies to implement sustainability criteria into their organizations, including eco-design strategies and other economical and social strategies in accordance with the sustainability definition, and other available tools such as eco-labels, environmental management systems, etc., and to use and combine them to obtain the results the company expects to help improve its competitiveness.

Keywords: Furniture sector, eco-design, sustainability, economical crisis, market trends, roadmap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
3762 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming

Authors: Chuan Li, Ming Liang, Qibing Yu

Abstract:

To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.

Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
3761 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
3760 A Common Automated Programming Platform for Knowledge Based Software Engineering

Authors: Ivan Stanev, Maria Koleva

Abstract:

Common Platform for Automated Programming (CPAP) is defined in details. Two versions of CPAP are described: Cloud based (including set of components for classic programming, and set of components for combined programming); and Knowledge Based Automated Software Engineering (KBASE) based (including set of components for automated programming, and set of components for ontology programming). Four KBASE products (Module for Automated Programming of Robots, Intelligent Product Manual, Intelligent Document Display, and Intelligent Form Generator) are analyzed and CPAP contributions to automated programming are presented.

Keywords: Automated Programming, Cloud Computing, Knowledge Based Software Engineering, Service Oriented Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
3759 Design and Implementation of Shared Memory based Parallel File System Logging Method for High Performance Computing

Authors: Hyeyoung Cho, Sungho Kim, SangDong Lee

Abstract:

I/O workload is a critical and important factor to analyze I/O pattern and file system performance. However tracing I/O operations on the fly distributed parallel file system is non-trivial due to collection overhead and a large volume of data. In this paper, we design and implement a parallel file system logging method for high performance computing using shared memory-based multi-layer scheme. It minimizes the overhead with reduced logging operation response time and provides efficient post-processing scheme through shared memory. Separated logging server can collect sequential logs from multiple clients in a cluster through packet communication. Implementation and evaluation result shows low overhead and high scalability of this architecture for high performance parallel logging analysis.

Keywords: I/O workload, PVFS, I/O Trace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3758 A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-Band Applications

Authors: R. Kiruthika, T. Shanmuganantham

Abstract:

A shaped single feed microstrip antenna is realized for C-Band and X-Band applications. The frequency range of C-band and X-band varies from 4 to 8 Gigahertz and 8 to 12 Gigahertz. The antenna operates under three frequency bands, one under C band and two under X-band applications. Defect on the ground called DGS (Defected Ground Structure) is made to enhance the distinctiveness of the antenna parameters. The design consists of DGS provided to improve the antenna performance. The substrate material used is of the Flame Retardant grade-4 (FR4) epoxy having high mechanical and electrical strength. The design and analysis was done using the FEM (Finite Element Method) based Ansoft HFSS (High Frequency Structural Simulator) Version 12. For the resonant frequencies of 5.21, 9.17 and 10.45, a value of reflection coefficient obtained is of -39.0, -16.0 and -30.7 dB respectively. Other constraints of antenna such as bandwidth, gain, directivity and Voltage Standing Wave Ratio (VSWR) are also conferred.

Keywords: Flame retardant-4 epoxy, finite element method, return loss, directivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
3757 Modeling Biology Inspired Reactive Agents Using X-machines

Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris

Abstract:

Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.

Keywords: Biology inspired agent, formal methods, x-machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
3756 Exploring the Relationships between Experiential Marketing, Customer Satisfaction and Customer Loyalty: An Empirical Examination in Konya

Authors: R. Öztürk

Abstract:

Experiential marketing is one of the marketing approaches that offer an exceptional framework to integrate elements of experience and entertainment in a product or service. Experiential marketing is defined as a memorable experience that goes deeply into the customer’s mind. Besides that, customer satisfaction is defined as an emotional response to the experiences provided by and associated with particular products or services purchased. Thus, experiential marketing activities can affect the level of customer satisfaction and loyalty. In this context, the research aims to explore the relationship among experiential marketing, customer satisfaction and customer loyalty among the cosmetic products customers in Konya. The partial least squares (PLS) method is used to analyze the survey data. Findings of the present study revealed that experiential marketing has been a significant predictor of customer satisfaction and customer loyalty, and also experiential marketing has a significantly positive effect on customer satisfaction and customer loyalty.

Keywords: Customer satisfaction, customer loyalty, experiential marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4566
3755 The Organizational Innovativeness of Public-Listed Housing Developers

Authors: Nor'Aini Yusof, Ismael Younis Abu-Jarad

Abstract:

This paper investigated the organizational innovativeness of public listed housing developers in Malaysia. We conceptualized organizational innovativeness as a multi-dimensional construct consisting of 5 dimensions: market innovativeness, product innovativeness, process innovativeness, behavior innovativeness and strategic innovativeness. We carried out questionnaire survey with all accessible public listed developers in Malaysia and received a 56 percent response. We found that the innovativeness of public listed housing developers is low. The study extends the knowledge on innovativeness theory by using a multi-dimensional contructs to conceptualize the innovativeness of public listed housing developers in Malaysia where all this while most studies focused on single dimensional construct of innovativeness. The paper ends by providing some explanations for the results.

Keywords: innovativeness, housing industry, measurement ofinnovativeness, public listed housing developers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
3754 Re-Design of Load Shedding Schemes of the Kosovo Power System

Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza

Abstract:

This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.

Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
3753 Some Characteristics of Systolic Arrays

Authors: Halil Snopce, Ilir Spahiu

Abstract:

In this paper is investigated a possible optimization of some linear algebra problems which can be solved by parallel processing using the special arrays called systolic arrays. In this paper are used some special types of transformations for the designing of these arrays. We show the characteristics of these arrays. The main focus is on discussing the advantages of these arrays in parallel computation of matrix product, with special approach to the designing of systolic array for matrix multiplication. Multiplication of large matrices requires a lot of computational time and its complexity is O(n3 ). There are developed many algorithms (both sequential and parallel) with the purpose of minimizing the time of calculations. Systolic arrays are good suited for this purpose. In this paper we show that using an appropriate transformation implicates in finding more optimal arrays for doing the calculations of this type.

Keywords: Data dependences, matrix multiplication, systolicarray, transformation matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
3752 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
3751 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Authors: Jan Busch, Peter Nyhuis

Abstract:

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity, and the required nozzle pressure is presented.

Keywords: Aerodynamic feeding system, genetic algorithm, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
3750 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264
3749 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: Wood waste ash, characterization, mechanical properties, finite element analysis, flexural behavior, bending tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
3748 Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review

Authors: S. I. Durowaye, O. P. Gbenebor, B. O. Bolasodun, I. O. Rufai, V. O. Durowaye

Abstract:

Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.

Keywords: Ceramic composites, Mechanical properties, Microparticles, Thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
3747 VFAST TCP: A delay-based enhanced version of FAST TCP

Authors: Salem Belhaj, Moncef Tagina

Abstract:

This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.

Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
3746 Methodology of Estimating Assembly Cost by MODAPTS

Authors: Heung Jae Cho, Jae Il Park

Abstract:

This paper presents the development of an MODAPTS based cost estimating system to help designers in estimating the manufacturing cost of a assembly products which is belonged from the workers in working fields. Competitiveness of manufacturing cost is getting harder because of the development of Information and telecommunication, but also globalization. Therefore, the accuracy of the assembly cost estimation is getting important. DFA and MODAPTS is useful method for measuring the working hour. But these two methods are used just as a timetable. Therefore, in this paper, we suggest the process of measuring the working hours by MODAPTS which includes the working field-s accurate information. In addition, we adduce the estimation method of accuracy assembly cost with the real information. This research could be useful for designers that can estimate the assembly cost more accurately, and also effective for the companies that which are concerned to reduce the product cost.

Keywords: Cost estimation, DFA, MODAPTS, Assembly cost

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3970
3745 Extraction Condition of Echinocactus grusonii

Authors: R. Oonsivilai, N. Chaijareonudomroung, Y. Huantanom, A. Oonsivilai

Abstract:

The optimal extraction condition of dried Echinocactus grusonii powder was studied. The three independent variables are raw material drying temperature, extraction temperature, and extraction time. The dependent variables are both yield percentage of crude extract and total phenolic quantification as gallic acid equivalent in crude extract. The experimental design was based on central composite design. Highest yield percentage of crude extract could get from extraction condition at raw material drying temperature at 60°C, extraction temperature at 15°C, and extraction time for 25 min °C. Moreover, the crude extract with highest phenolic occurred by extraction condition of raw material drying temperature at 60°C, extraction temperature at 35 °C, and extraction lasting 25 min.

Keywords: Drying temperature, Extraction temperature, Optimal condition, Total phenolic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
3744 Improving Injection Moulding Processes Using Experimental Design

Authors: Yousef Amer, Mehdi Moayyedian, Zeinab Hajiabolhasani, Lida Moayyedian

Abstract:

Moulded parts contribute to more than 70% of components in products. However, common defects particularly in plastic injection moulding exist such as: warpage, shrinkage, sink marks, and weld lines. In this paper Taguchi experimental design methods are applied to reduce the warpage defect of thin plate Acrylonitrile Butadiene Styrene (ABS) and are demonstrated in two levels; namely, orthogonal arrays of Taguchi and the Analysis of Variance (ANOVA). Eight trials have been run in which the optimal parameters that can minimize the warpage defect in factorial experiment are obtained. The results obtained from ANOVA approach analysis with respect to those derived from MINITAB illustrate the most significant factors which may cause warpage in injection moulding process. Moreover, ANOVA approach in comparison with other approaches like S/N ratio is more accurate and with the interaction of factors it is possible to achieve higher and the better outcomes.

Keywords: Analysis of variance, ANOVA, plastic injection mould, Taguchi methods, Warpage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3886
3743 Introducing Fast Robot Roller Hemming Process in Automotive Industry

Authors: Babak Saboori, Behzad Saboori, Johan S. Carlson, Rikard Söderberg

Abstract:

As product life cycle becomes less and less every day, having flexible manufacturing processes for any companies seems more demanding. In the assembling of closures, i.e. opening parts in car body, hemming process is the one which needs more attention. This paper focused on the robot roller hemming process and how to reduce its cycle time by introducing a fast roller hemming process. A robot roller hemming process of a tailgate of Saab 93 SportCombi model is investigated as a case study in this paper. By applying task separation, robot coordination, and robot cell configuration principles in the roller hemming process, three alternatives are proposed, developed, and remarkable reduction in cycle times achieved [1].

Keywords: Cell configuration, cycle time, robot coordination, roller hemming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4067
3742 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: Bridge, Finite Element, 3D model, Earthquake, Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
3741 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

Authors: Naohiko Honma, Kojiro Suzuki

Abstract:

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991