Search results for: pattern recognition approach.
4254 A VR Cybersecurity Training Knowledge-Based Ontology
Authors: Shaila Rana, Wasim Alhamdani
Abstract:
Effective cybersecurity learning relies on an engaging, interactive, and entertaining activity that fosters positive learning outcomes. VR cybersecurity training may provide a training format that is engaging, interactive, and entertaining. A methodological approach and framework are needed to allow trainers and educators to employ VR cybersecurity training methods to promote positive learning outcomes. Thus, this paper aims to create an approach that cybersecurity trainers can follow to create a VR cybersecurity training module. This methodology utilizes concepts from other cybersecurity training frameworks, such as NICE and CyTrONE. Other cybersecurity training frameworks do not incorporate the use of VR. VR training proposes unique challenges that cannot be addressed in current cybersecurity training frameworks. Subsequently, this ontology utilizes concepts to develop VR training to create a relevant methodology for creating VR cybersecurity training modules.
Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5864253 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16824252 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques
Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han
Abstract:
In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.
Keywords: Image Enhancement, Multiscale Retinex, Image Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27384251 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors: H. Katkhuda
Abstract:
A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.
Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15344250 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition
Authors: Liming Zhang
Abstract:
In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.
Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17244249 Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor
Authors: Jackson H. W. Chang, Jedol Dayou, Justin Sentian
Abstract:
Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collected using ground-based spectrometer with shadowband technique. The result shows that variation of solar radiation is the least in UV fraction, followed by PAR and the most in NIR. Broader variations in PAR and NIR are associated with the short time scale fluctuations of aerosol and water vapors. The corresponding daily evolution of UV, PAR, and NIR fractions implies that aerosol and water vapors variation could also be responsible for the deviation pattern in the Langley-plot analysis.Keywords: Aerosol, short time scale variation, solar radiation, water vapor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18484248 Ecological Networks: From Structural Analysis to Synchronization
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.Keywords: Ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19954247 A Cultural-Sensitive Approach to Counseling a Samoan Sex Offender
Authors: Byron Malaela Sotiata Seiuli
Abstract:
Sexual violation is any form of sexual violence, including rape, child molestation, incest, and similar forms of non-consensual sexual contact. Much of these acts of violation are perpetuated, but not entirely, by men against women and children. Moetolo is a Samoan term that is used to describe a person who sexually violates another while they or their family are asleep. This paper presents and discusses sexual abuse from a Samoan viewpoint. Insights are drawn from the authors’ counseling engagement with a Samoan sex offender as part of his probation review process. Relevant literature is also engaged to inform and provide interpretation to the therapeutic work carried out. This article seeks to contribute new understanding to patterned responses of some Samoan people to sexual abuse behaviors, and steps to remedy arising concerns with perpetrators seeking reintegration back into their communities.
Keywords: Fa’asamoa, Samoan cultural identity, sexual abuse and recovery, Uputāua therapeutic approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10894246 Criticality Assessment of Failures in Multipoint Communication Networks
Authors: Myriam Noureddine, Rachid Noureddine
Abstract:
Following the current economic challenges and competition, all systems, whatever their field, must be efficient and operational during their activity. In this context, it is imperative to anticipate, identify, eliminate and estimate the failures of systems, which may lead to an interruption of their function. This need requires the management of possible risks, through an assessment of the failures criticality following a dependability approach. On the other hand, at the time of new information technologies and considering the networks field evolution, the data transmission has evolved towards a multipoint communication, which can simultaneously transmit information from a sender to multiple receivers. This article proposes the failures criticality assessment of a multipoint communication network, integrates a database of network failures and their quantifications. The proposed approach is validated on a case study and the final result allows having the criticality matrix associated with failures on the considered network, giving the identification of acceptable risks.
Keywords: Dependability, failure, multipoint network, criticality matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16044245 Motion Control of a Ball Throwing Robot with a Flexible Robotic Arm
Authors: Yizhi Gai, Yukinori Kobayashi, Yohei Hoshino, Takanori Emaru
Abstract:
Motion control of flexible arms is more difficult than that of rigid arms, however utilizing its dynamics enables improved performance such as a fast motion in short operation time. This paper investigates a ball throwing robot with one rigid link and one flexible link. This robot throws a ball at a set speed with a proper control torque. A mathematical model of this ball throwing robot is derived through Hamilton’s principle. Several patterns of torque input are designed and tested through the proposed simulation models. The parameters of each torque input pattern is optimized and determined by chaos embedded vector evaluated particle swarm optimization (CEVEPSO). Then, the residual vibration of the manipulator after throwing is suppressed with input shaping technique. Finally, a real experiment is set up for the model checking.
Keywords: Motion control, flexible robotic arm, CEVEPSO, ball throwing robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40734244 Preservation of Isparta Yılan Kırkan (Yılan Kıran) Fountain within the Scope of Sustainability
Authors: Meryem Elif Çelebi Yakartepe, Ayşe Betül Gökarslan
Abstract:
Sustainable architecture is an approach which accepts the climatic and tomographic data as a necessary preliminary data package by favoring the relationship between human and nature and which strives to use the sources economically. The reflection of sustainable architecture approach to preservation - restoration discipline is including the architectural inheritance to daily life with its unique or new function by restoring it.
The restoration decisions of Yılan Kırkan Fountain in Isparta province of Turkey is a good example of the works of sustainable architecture and the preservation of architectural inheritance. It is aimed that Yılan Kırkan Fountain, which is desolate nowadays with no function, to be restored by the local authorities and university, included in the daily life and continue its function.
Keywords: Conservation and Restoration, Sustainable Architecture, Movement Technique, Isparta Yılan Kırkan Fountain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33584243 Reactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines
Authors: Poramate Manoonpong, Frank Pasemann, Florentin Wörgötter
Abstract:
This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding reactive behavior. On the other hand, modular neural control based on a central pattern generator is applied for locomotion of walking machines. It coordinates leg movements and can generate omnidirectional walking. As a result, through a sensorimotor loop this reactive neural controller enables the machines to explore a dynamic environment by avoiding obstacles, turn toward a light source, and then stop near to it.Keywords: Recurrent neural networks, Walking robots, Modular neural control, Phototaxis, Obstacle avoidance behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17294242 Design and Implementation of Shared Memory based Parallel File System Logging Method for High Performance Computing
Authors: Hyeyoung Cho, Sungho Kim, SangDong Lee
Abstract:
I/O workload is a critical and important factor to analyze I/O pattern and file system performance. However tracing I/O operations on the fly distributed parallel file system is non-trivial due to collection overhead and a large volume of data. In this paper, we design and implement a parallel file system logging method for high performance computing using shared memory-based multi-layer scheme. It minimizes the overhead with reduced logging operation response time and provides efficient post-processing scheme through shared memory. Separated logging server can collect sequential logs from multiple clients in a cluster through packet communication. Implementation and evaluation result shows low overhead and high scalability of this architecture for high performance parallel logging analysis.Keywords: I/O workload, PVFS, I/O Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15604241 Person Re-Identification Using Siamese Convolutional Neural Network
Authors: Sello Mokwena, Monyepao Thabang
Abstract:
In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.
Keywords: Camera network, convolutional neural network topology, person tracking, person re-identification, Siamese.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814240 Re-Design of Load Shedding Schemes of the Kosovo Power System
Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza
Abstract:
This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27654239 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14914238 The Use of Ontology Framework for Automation Digital Forensics Investigation
Authors: Ahmad Luthfi
Abstract:
One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as Ontology Framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely Analysis Tools and Operating System. By using the concept of Ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing Forward Chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the Ontology.
Keywords: Ontology, Framework, Automation, Forensics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27544237 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22424236 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.
Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5074235 Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area
Authors: Siska Soesanti, Norihiro Nakai
Abstract:
Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.
Keywords: City center, commercial area, space syntax, street network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18184234 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model
Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li
Abstract:
The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57894233 Fatigue Failure of Structural Steel – Analysis Using Fracture Mechanics
Abstract:
Fatigue is the major threat in service of steel structure subjected to fluctuating loads. With the additional effect of corrosion and presence of weld joints the fatigue failure may become more critical in structural steel. One of the apt examples of such structural is the sailing ship. This is experiencing a constant stress due to floating and a pulsating bending load due to the waves. This paper describes an attempt to verify theory of fatigue in fracture mechanics approach with experimentation to determine the constants of crack growth curve. For this, specimen is prepared from the ship building steel and it is subjected to a pulsating bending load with a known defect. Fatigue crack and its nature is observed in this experiment. Application of fracture mechanics approach in fatigue with a simple practical experiment is conducted and constants of crack growth equation are investigated.Keywords: fatigue, fracture mechanics, fatigue testing machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33694232 3DARModeler: a 3D Modeling System in Augmented Reality Environment
Authors: Trien V. Do, Jong-Weon Lee
Abstract:
This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26454231 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.
Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22404230 Asymptotic Approach for Rectangular Microstrip Patch antenna With Magnetic Anisotropy and Chiral Substrate
Authors: Zebiri Chemseddine, Benabdelaziz Fatiha
Abstract:
The effect of a chiral bianisotropic substrate on the complex resonant frequency of a rectangular microstrip resonator has been studied on the basis of the integral equation formulation. The analysis is based on numerical resolution of the integral equation using Galerkin procedure for moment method in the spectral domain. This work aim first to study the effect of the chirality of a bianisotopic substrate upon the resonant frequency and the half power bandwidth, second the effect of a magnetic anisotropy via an asymptotic approach for very weak substrate upon the resonant frequency and the half power bandwidth has been investigated. The obtained results are compared with previously published work [11-9], they were in good agreement.Keywords: Microstrip antenna, bianisotropic media, resonant frequency, moment method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16034229 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17724228 Enhanced Performance of Fading Dispersive Channel Using Dynamic Frequency Hopping(DFH)
Authors: Walid M. Saad
Abstract:
techniques are examined to overcome the performance degradation caused by the channel dispersion using slow frequency hopping (SFH) with dynamic frequency hopping (DFH) pattern adaptation. In DFH systems, the frequency slots are selected by continuous quality monitoring of all frequencies available in a system and modification of hopping patterns for each individual link based on replacing slots which its signal to interference ratio (SIR) measurement is below a required threshold. Simulation results will show the improvements in BER obtained by DFH in comparison with matched frequency hopping (MFH), random frequency hopping (RFH) and multi-carrier code division multiple access (MC-CDMA) in multipath slowly fading dispersive channels using a generalized bandpass two-path transfer function model, and will show the improvement obtained according to the threshold selection.Keywords: code division multiple access (CDMA), dynamic channel allocation (DCA), dynamic channel assignment, frequency hopping, matched frequency hopping (MFH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17114227 Artificial Intelligence Techniques Applications for Power Disturbances Classification
Authors: K.Manimala, Dr.K.Selvi, R.Ahila
Abstract:
Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.
Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15574226 Modeling Metrics for Monitoring Software Project Performance Based On the GQM Model
Authors: Mariayee Doraisamy, Suhaimi Bin Ibrahim, Mohd Naz’ri Mahrin
Abstract:
There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.
Keywords: Software project performance, Goal Question Metrics, Performance Measurement Criteria, Metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25264225 Intelligent System for Breast Cancer Prognosis using Multiwavelet Packets and Neural Network
Authors: Sepehr M.H.Jamarani, M.H.Moradi, H.Behnam, G.A.Rezai Rad
Abstract:
This paper presents an approach for early breast cancer diagnostic by employing combination of artificial neural networks (ANN) and multiwaveletpacket based subband image decomposition. The microcalcifications correspond to high-frequency components of the image spectrum, detection of microcalcifications is achieved by decomposing the mammograms into different frequency subbands,, reconstructing the mammograms from the subbands containing only high frequencies. For this approach we employed different types of multiwaveletpacket. We used the result as an input of neural network for classification. The proposed methodology is tested using the Nijmegen and the Mammographic Image Analysis Society (MIAS) mammographic databases and images collected from local hospitals. Results are presented as the receiver operating characteristic (ROC) performance and are quantified by the area under the ROC curve.Keywords: Breast cancer, neural networks, diagnosis, multiwavelet packet, microcalcification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400