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Abstract—This paper aims to provide an interpretation of artificial
neural networks (ANNs) and explore some of its implications. The
interpretation views ANNs as a memory which encodes instances of
experience. An experiment explores the behavior of encoding and
retrieval of instances from memory. A localised representation ANN
is created that allows control over encoding and retrieved memory
sample size and is experimented with using the MNIST digits
dataset. The relationship between input familiarity, conflict within
retrieved samples, and error rates is described and demonstrated
to be an effective driver for memory encoding. Results indicate
that selective encoding and retrieval samples that allow detection of
memory conflicts produce optimal performance, and that error rates
are normally distributed with input familiarity and conflict. By using
input familiarity and sample consistency to guide memory encoding,
the number of encoding trials on the dataset were reduced to 18.33%
of the training data while maintaining good recognition performance
on the test data.

Keywords—Artificial Neural Networks, ANNs, representation,
memory, conflict monitoring, confidence.

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) have

revolutionized the application of Artificial Intelligence

(AI) on various types of recognition problem. Yet, accounts

of how ANNs solve these kinds of problems are often

vague, reducing the perceived trustworthiness of AI solutions.

Ideally, an explanation should expose key principles that

offer guidance for development, application of AI, and be

accessible to general lay audiences.

Perhaps one of the best explanations was provided by LeCun

et al. [1]. Two ideas about how ANNs solve classification

problems are touched on in that review. The first relates to

fully connected ANNs and uses the idea of hyperplanes. In

this paper this idea is called Hierarchical Representations.

The second relates to convolutions and implies the idea of

template matching. This idea is discussed here under the name

Hierarchical Composition. While these ideas imply classical

machine learning (ML) principles, the problem-solving logic

of each is not fully explored in LeCun et al.’s review [1].

In this paper, hierarchical representations, hierarchical

composition, and their implications are further articulated

and explored. Both ideas are similar in that they denote a
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form of content addressable memory [2]. But it is noted

that encodings of information in each differ in the degree

to which they are distributed or localized to representational

units (i.e., artificial neurons). Each also has different trade-offs

in terms of computation. Critically, it is argued that to

achieve data compression and efficient retrieval, hierarchical

representations trade off the ability to guarantee the validity

of representations. Representations may not reflect true

experiences from training history, leaving room for anomalous

behavior such as is observed in adversarial examples [3].

This paper notes that different types of encoding have

varying latitude for the selection of conflicting representations.

Conflict is where multiple alternatives with different meanings

are activated to represent input data. Conflict detection has

an important role to play in cognitive control [4], but while

conflict is obvious in some encodings (i.e., localist), in

other encodings (i.e., distributed) there is no direct means of

identifying it. One possibility for the latter is to augment a

distributed representation system with a memory for instances,

as per Complementary Learning Systems theory [5], [6]

and some trends in machine learning (e.g., [7]). This paper

presents a localist ANN for instance memory which uses

epistemic sampling to judge conflict. It is demonstrated that

memory conflict has a relationship to encoding demands

as well as generalization performance. The technique also

allows for the judgement of familiarity, that when combined

with conflict, can be formalized into a metric that can

effectively separate classification responses into those with

high and low error rates a priori. This provides an effective

means of judging classification confidence which serves as

a useful internal monitoring (or meta-cognitive) function. It

is further demonstrated that utilising judgement confidence to

guide memorization can further reduce encoding demand with

minimal effect on performance.

II. PROBLEM SOLVING LOGIC

A. Hierarchical Representations

Many interpretations of deep ANNs focus on the idea

of hierarchical representations. For example, LeCun et al.

[1] write, “Deep-learning methods are representation-learning

methods with multiple levels of representation... that each

transform the representation at one level (starting with the

raw input) into a representation at a higher, slightly more

abstract level” (p.436). Early work in [8] originally posited

this idea as a ‘superposition of memory traces’ that are
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distributed across multiple representational units (i.e., artificial

neurons) that translate inputs to outputs. The authors asserted

that the logic involved was a synthesis between exemplar

and prototype models of classification. This implies encoding

information about individual instances (i.e., exemplars) as well

as determining common elements and their statistical variances

(i.e., central tendencies or prototypes).

The foundational concepts of distributed representations

convey advantages in terms of automatic generalization and

content addressable memory [2]. Automatic generalization

occurs through the capturing of ranges of variance. Content

addressable memory occurs in that matches to common

elements allow for effective memory lookup. From this

perspective, training instances can be fit neatly into the large

dimensional space afforded by multiple scalar representational

units (i.e., artificial neurons). This insight is supported by

observations that deep learning networks can effectively

memorize their training data [9], [10]. Common elements (i.e.,

patterns) of instances are reused to compress the data and

form prototypes during training [11]. Detection of common

elements during classification point to the relevant parts of

memory removing the need for search. From a distance-based

classifier perspective (i.e., exemplar and prototype models)

these are attractive properties for dealing with large volumes

of instances. Such memory compression may be related

to long-term memory found in the cortex as compared

to more immediate to medium term memory mediated by

midbrain structures such as the hippocampus, as argued by

Complementary Learning Systems theory [5], [6].

The hierarchical element to distributed representation relates

to the fact that stacking encoding (transformation) schemes

allows better organization [1]. Instance data that may be

highly overlapping or disjoint in attribute space can be

sorted into neatly separable classes. This description appears

to apply equally well to deep auto-encoders [12] and

error backpropagation trained networks [13]. In both cases,

learning is framed as an optimization problem on vector

representations. The representation on each layer is adjusted to

fit some objective function which captures some undesirable

or desirable properties. For example, adjustments can be

made to reduce error at the output in the case of error

backpropagation learning [13], or to increase representational

similarity for augmentations of the same instance along

lines of common variance like cropping, mirror image, and

brightness in contrastive learning [14].

The learning of hierarchical representations can be

summarized as ‘learning an encoding’. This can be interpreted

as findings ways to partition higher-dimensional vector

space [11]. It is in learning this encoding that hierarchical

representations take on the properties of a content addressable

memory. It is important to note that by hierarchically

organising training instances into regions of a vector space

of distributed units, this encoding scheme appears to trade-off

veridical memory. Veridical memory is where the current

state of representation can be validated as being within the

distribution of previous experience. Deep learning networks

have difficulty validating whether current input is inside or

outside its training distribution, a problem that is not shared

by instance memory approaches [15].

To illustrate the difference between encoding and veridical

memory we can use a language metaphor. We consider a

system for encoding concepts as text. Letters and morphology

(i.e., common elements and variances) may be hierarchically

stored. The encoding scheme means that minimal information

is needed in memory to represent all words. But the encoding

scheme itself is not a vocabulary of valid words in that

encoding. For example, a nonsense word such as ‘garbangle’ is

a valid representation in terms of common syntactic elements,

but is not a valid word in English. While some additional

layers can provide a vocabulary of valid words, the vector

space in distributed representation systems presents a problem.

Boundaries and transformations of the vector space are

somewhat arbitrary. As adversarial examples show, small

dissimilarities in unfamiliar ways can cause a crossing of

partition boundaries resulting in misclassification [3]. One way

of interpreting this may be in imaging the representational

space being folded to obscure unsampled areas in training (see

Fig. 2). This removal of unsampled regions in representational

space makes it difficult to detect out-of-distribution inputs

[15] and is likely to contribute to problems with resolving

the stability-plasticity dilemma [16] since space for new

information is removed. In other words, the representation

is highly specialized to the training data such that small

perturbations can cause arbitrary boundary crossings. Thus, the

compression and fast lookup of the distributed representational

scheme trades off veridical memory. Other methods like

probabilistic programming [17] and lazy distance-based

methods [18] are unlikely to suffer this problem. Small and

unfamiliar perturbations would not cause a boundary crossing.

Unfamiliar input would be too low in probability or too

dissimilar to memory to be considered valid.

The explanation of transformations between layers in

hierarchical representations is often vague. While this notion

conveys the idea that the representation is modified, it presents

no principled insight into the logic of such transformations and

their role in decision making. Given that learning algorithms

typically pose a problem of optimising vector representations,

the process of learning can be considered as largely empirical

and atheoretical. All that guides learning is making the best

of a potentially exhaustive list of adjustments. This not

only makes learning slow, but it also largely precludes any

general interpretation of learning because no specific logic is

involved other than the search for what is optimal. So, while

optimization learning makes ANNs universal learners [1] it

comes at the cost of general interpretability and efficiency in

the learning process.

The discussion thus far has focused on the idea of fully

distributed representation. Nominally this is what standard

ANNs use [2]. A fully distributed representation can be

considered as a situation in which a single entity is represented

by a unique pattern of activity across all representational

units. For example, a layer in an ANN can be considered

as a size n word where every unique state of activity

across nodes represents a specific ‘thing’. This excludes

simultaneous activations of multiple candidates. The latitude

for simultaneous activations has computational implications.
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Primarily, it precludes the detection of representational

conflicts, which are important signals for cognitive control

[4], which itself may be important for memory encoding. As

the experiments of this paper show (Section IV), conflict in

activations has a relationship to classification performance,

memorization demand, and can be used as a signal of the

meta-cognitive judgment of confidence.

B. Hierarchical Composition

The hierarchical composition of features is an intuitive

interpretation of object classification. It is often found in

cognitive modelling [19] and is present in descriptions of

convolutional filters of Convolutional Neural Networks [1].

The explanation of recognition is typically described in

terms of feature engineering: the reduction of input data

dimensionality into a more general description that increases

the information available for making discriminative judgments

[20]. A set of common but discriminative patterns or attributes

is identified and selected from the input data to summarize it,

and this process is repeated hierarchically on the summary

representations. This process can be conceived of as template

matching. LeCun et al. [1] describe this in similar terms, with

templates for simple features being matched on one layer,

these template activations being fed as input into the next set of

templates for more complex features, and so on. Those authors

thus describes learning as largely being a process of automatic

feature engineering. This interpretation of recognition logic is

intuitive and accessible, and can be visualized (e.g., [21]).

A key facet of the hierarchical composition idea is the

selection of discrete entities (i.e., features) from a range

of options. Selection of discrete entities is most notable

when representation is localized, as it appears to be in the

convolutional feature layers of Convolutional Neural Networks

[22]. Localist representation in ANNs have routinely been

criticized in the past for issues of inefficiency and overfitting

[19]. Because localist representation can allow multiple,

potentially conflicting memory activations, constraints are

typically applied to force selection of a single entity in

cognitive modelling [23]. The presence of conflict in selections

is typically viewed as a signal of ambiguity or interference that

needs to be resolved via the engagement of cognitive control

[4]. For example, such resolution may be found by appealing

to representations held in hierarchically superior locations of

memory [24] or perhaps by goal directed rules that frame

current attention [25]. As discussed in Section II-A, fully

distributed representation also conceptually forces selection.

LeCun et al. [1] point out that automatic feature engineering

of a hierarchical composition is a difficult problem. The

authors note that convolutional architecture trained with error

backpropagation learning is most remarkable for solving it.

It can be conceived that the problem relates to finding

ways to segment instances of input data into a set of

meaningful, hierarchically ordered chunks automatically. In

standard Convolutional Neural Networks the first few layers of

convolutions appear to be general for the visual domain [27]

and perhaps represent a common visual syntax of features.

After these initial layers, encoded information begins to appear

more idiosyncratic, much like fragments of instances. Some

examples of information encoded into individual artificial

neurons of a deep convolutional neural network are presented

in Fig. 1. The figure presents synthetic images (left) that

indicate a preferred input for maximum activation of an

artificial neuron under some regularization constraints. The

middle column shows highlighted pixels of the input images

(right) that lead to high activation of the neuron. These

examples show qualitative evidence of fragments of instances

or prototypes encoded into individual neurons starting at early

layers. Inspecting Fig. 1 it is difficult to imagine how the layer

3 feature example (left) could be associated with anything

other than a person. The instance like quality of the encoding

is notable especially in the top-left corner where there appears

to be a tree in the background. The layer 4 example (left) also

shows evidence of specific instances of vehicle chassis and

windows. These examples contrast with the example feature

on layer 5 that is associated with at least two classes (snakes

and harps).
A cursory appraisal of visualizations (see Fig. 1) also

suggests that many similar instance fragments may be

encoded into individual representation units. This conflation of

instances has the appearance of capturing a range of statistical

variance around a prototype. However, while a prototype

is a single template or entity, these conflations appear as

many related instances clustered together. For example, in

Fig. 1 the layer 4 example appears to show fragments from

several distinct vehicles. The layer 5 example appears to show

multiple snake like fragments, perhaps even in the same frame.

The interpretation of a conflation of instance fragments into a

single representation unit could be what [8] were suggesting

when they described ANNs as a synthesis between exemplar

and prototype models of classification. The key difference is

that their suggestion was for a region of vector space, and here

it is a single local unit.
Treating individual representational units as clusters into

which to encode related entities shows how localization can

achieve the same objectives as hierarchical representations

(Section II-A). It also may act as a content addressable

memory and support automatic generalization. However, being

localized, it conceptually does not trade off veridical memory,

or the detection of conflicts. This is because insofar as nodes

represent specific features, there is hypothetically no folding

of the representational space. Input that is outside of training

distribution should lead to little to no activity in the encoded

features that represent specific entities (e.g., faces, snakes

etc). This unfamiliarity can at least in principle be detected

and produce low confidence in classification judgement. In

practice, hierarchical compositions of features in architectures

such as Convolutional Neural Networks are often paired

with distributed representations in a set of fully-connected

layers just before the output. Such networks are vulnerable

to adversarial and out-of-distribution examples and lack good

means for determining judgement confidence [15].

III. POSITION

This paper argues that typical ANNs act somewhat

in the capacity of distance-based classifiers on instances
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Fig. 1 Visualizations of individual artificial neurons in a deep convolutional neural network [Images selected with permission from [26] website]

and prototypes in the object recognition domain. The

intention is to train a content-addressable memory that makes

lookup and similarity computations efficient. Insofar as the

representation captures statistical structures in the training

data, automatic generalization can occur for novel inputs that

fall into the right zones of the representational space. This

perspective is generally supported by the observation that lazy,

instance memory classifiers have comparable performance

to autoencoders that focus on distributed representations on

benchmarks like the MNIST digits; kNN L3 with no features

achieves 2.83% error on the MNIST test set [28], while

a two-layer Restricted Boltzmann Machine (RBM) achieves

2.49% error [12]. If distributed ANNs are simply encoding

many instances into an efficient structure, then a similar

performance between instance memory and representational

encoding systems would be expected.

Content-addressable memory for efficient lookup and

memory compression are both vitally important properties

for systems that can scale to large problems. However, the

type of representational encoding scheme selected conveys

different trade offs. As argued through Section II, using

fully distributed encoding may afford good data compression

and efficient lookup but it presents an issue for veridical

memory. Distortions in the representation space made by the

encoding scheme may preclude judgements of familiarity and

the lack of capability to represent multiple candidates prevents

detection of conflicts. In contrast, a localized encoding scheme

affords less data compression but still presents opportunities

to make lookup efficient while retaining veridical memory.

Localization allows familiarity to be judged by gauging

representational activity (i.e., similarity) and the allowance for

multiple competing activations allows for detection of conflict.

In line with the assertions of Complementary Learning

Systems theory [5], [6], it is the position here that

slowly tuned, long-term memory representation networks

(i.e., neocortical) be supplemented with fast-acting instance

memory. Representational transformations that emerge from

fully-connected networks should be avoided as inputs to such

instance memory because of their potential for distorting

the representational space. Such networks perhaps are

best thought of as representing automatic pathways for

overlearned tasks. Compositional representations of localized

features are better inputs for instance learning because they

preserve the representational space, allowing for judgement of

familiarity as well as preserving the capacity for solving the

stability-plasticity dilemma by allowing new experiences to be

encoded into free portions of memory [16].

In machine learning, typical implementations of instance

memory are in the form of kNN (e.g., [29]). These approaches

have the drawback of requiring the selection of a fixed

sample size (i.e., the k parameter) as well as not being very

biologically inspired. Localist artificial neural networks [19],
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such as Adaptive Resonance Theory (for an overview [30]) and

SUSTAIN [31], provide biologically inspired connectionist

networks that are suitable for instance memory. Unfortunately,

these localist approaches tend to favour single selections for

instances from memory (or representations) without explicitly

monitoring for conflicts. Conflict monitoring, along with

familiarity judgement are both meta-cognitive judgements that

are important for the elicitation of cognitive control [4] as

well an indication that memorization of new information is

required.

In this paper an epistemic sampling approach within a

connectionist framework is advocated for instance memory.

Fig. 2 presents an illustration of the approach. Suns and stars

on the figure indicate instances of different classes encoded

into memory. The black dashed line indicates the true class

boundary. The red dashed line represents a folding in space

that could occur in distributed representation schemes due

to a lack of sampling in that region of space that would

remove the space between it and the true class boundary (this

is an interpretation of how memory compression may occur

within a distributed representation scheme). The black dots

on Fig. 2 represent some new inputs to classify. The black

circles around these dots represent the distance to the closest

instance in memory. The blue circles around the black circles

represent a additional sampling range for detecting conflicts

(this sampling range is determined by a parameter labelled σ
in the experiment that follows). Input number 1 demonstrates a

well sampled region of space with low conflict. Input number

2 shows a mediumly well sampled region of space with high

conflict. Finally, input number 3 shows an unsampled region of

space with low conflict. These examples demonstrate how both

conflict and familiarity (i.e., distance or sampling adequacy)

are important for making reliable judgements.

The epistemic sampling approach in this paper is set

within a connectionist framework. The sampling ranges are

dynamically adjusted based on peak network activity (i.e.,

max familiarity or smallest distance), such that greater bias

(smaller sampling) is elicited when input is familiar, and

greater variance (larger sampling) is elicited when input is

unfamiliar. This property is evident in Fig. 2 with input

location 1 using a small sample due to high familiarity, and

input location 3 using a large sample due to unfamiliarity. By

using sampling, judgement of conflict can be performed by

comparing the ratios of implications (i.e., class labels) within

the selected sample. Such ratios have a conceptual link to

Bayesian like (probability) judgements when the familiarity

(i.e., conformity) of the sample is taken into account (e.g., see

[32]). In this way the technique could present as a potential

synthesis between Bayesian [33] and connectionist cognitive

modelling techniques [34]. In the experiment that follows the

effect of sampling range and familiarity are explored on a

machine learning dataset. Conflict and familiarity are also

combined into a judgement metric that is effectively utilized to

judge decision confidence and guide memorization to reduce

the amount of information to be stored.

Fig. 2 Illustration of epistemic sampling in a hypothetical sample space

IV. EXPERIMENTS

This section presents some experimental results

demonstrating the usefulness of representational conflict

on a classification task. First the effect of conflict on

generalization performance and demand for encoding is

established. The use of representational conflict as an

indicator of judgment confidence is then demonstrated.

This latter property is useful for signalling the need for

supervised learning. This could present an opportunity for

synergistic systems in which a classifier automatically handles

clear instances and flags ambiguous instances for human

intervention and labelling. This is demonstrated by using

the judgement metric to request supervision only when the

system is uncertain which reduces supervision requirements

as well as lowering memorization demand.

A. Experimental Setup

The experiments presented adopted a distance-based

classifier approach, setup as a localist ANN. The classifier

was formulated in the logic of sets rather than vectors, with

the focus on discrete entities and graph structure. Instances and

categories were added as nodes along with all relevant links

dynamically during learning. Nodes had an activation strength

property that was used to determine selection.

The instance and category nodes were handled differently.

Instance nodes had an activation value that was defined by

a measure of similarity between the instance in memory and

a new instance presented as input. This similarity function

is inspired by the idea of resonance in Adaptive Resonance

Theory [30], and includes the bottom-up and top-down

interaction between the input and memory representation. The

activation function involves the intersection between the set of

data of the instance at the input, Iinput, and the set of data

for the instance held in memory, Imemory , proportional to the

size of both sets,
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Fig. 3 Recognition accuracy (left axis) on the test set for the selective (blue) and aggregate similarity (orange) approaches: The number of instances
memorized (right axis) is shown in grey

Ainstance =
|Iinput ∩ Imemory|

|Iinput| · |Iinput ∩ Imemory|
|Imemory|

=
|Iinput ∩ Imemory|2
|Iinput| · |Imemory|

(1)

where Ainstance is the activation strength, |Iinput ∩ Imemory|
is the amount of shared data, |Iinput| is the size of the input

set’s data, and |Imemory| is the size of the instance set’s data.

Values nearer 1.0 indicated a strong similarity, whereas values

nearer 0.0 indicated little or no similarity. Similarity can be

conceptualized as the distance between an input and instances

in the representation space as shown in Fig. 2. Instances held

links to category nodes, and selections were manipulated. A

parameter, σ, determined a selection range of active instances,

such that its value indicated a range from the maximum

activation to be selected as shown in Fig. 2. For example,

σ = 0.0 would only select instances at maximum activation,

and σ = 1.0 would select all instances. Thus, the system was

like kNN except that the number of neighbours was determined

dynamically relative to the adequacy of sampling in memory.

This is a simple, effective and online approach that is suitable

for connectionist models. Statistical approaches to selecting

sampling size are also possible (see [18]).
Category nodes were designed as hubs that aggregated the

activation values of the sampled instances. In the experiments,

the activation strength of a category node, Acategory, was

simply the sum of the activation strengths of the set of selected

memory instances, Iselected = {I1, I2, ..., In};

Acategory =

Iselected∑

n=1

Ainstance (2)

The category node with the greatest activation was selected

as the response.

The system was configured for stream learning. On every

trial during training and testing, an input example was

processed and compared to whatever was currently held in

memory to generate a response. On training trials, when

supervision was requested, feedback was provided after a

response was made, allowing training trials to act as validation

trials for estimates of model performance. On supervised trials,

a parameter, ρ, was used to determine if the processed input

should be recruited as a new node (i.e., memorized). The

parameter ρ indicated a threshold of activation (i.e., similarity)

in which an instance of the correct class already held in

memory could be considered as equivalent to the currently

processed input, and thus not requiring memorization. If no

instance in memory was sufficiently active, the input was

memorized along with its class label. The parameter ρ can

be considered as similar to vigilance in Adaptive Resonance

Theory [30], except that the system here does not adapt

existing instances into prototypes.

The MNIST digits dataset was used for all experiments [28].

The benchmark performance specified on the website for kNN

without features was 2.83% error on the test set and was

considered the appropriate benchmark for these experiments

when using the full training set of 60,000 instances. All

nominal performances reported here were on the full test set

of 10,000 instances, however for many of the demonstrations

only a subset of the first 3,500 training instances were used.

This was done to reduce processing time as models were

run to get output under 100 different parameter values each

(i.e., increments of 0.01 between 0.0 – 1.0 for the ρ and σ
parameters). All instances in the dataset were discretised into

coordinate point activations based on a cut-off value of 30 for

each pixel. Thus, the input data and data committed to memory

were a set of active coordinates within the 28×28 bounds of
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the original data. Inactive locations were not represented.

B. Familiarity & Sampling

In this experiment, 3,500 training instances were used with

supervision on all trials, in order to explore the parameter

space for ρ (recruitment/memorization) and σ (sampling

range). The memory sampling range has a profound influence

on encoding demand as well as generalization performance.

This effect was demonstrated by manipulating the node

recruitment parameter, ρ, for two models using extreme values

of the sampling range (σ = 0.0, most similar only, and σ =
1.0, all instances). Fig. 3 illustrates that a selective approach

produced substantially greater generalization performance

for most of the ρ parameter range. The asymptotic curve

indicates that near maximal performance could be achieved

by encoding only around half the training set for this model.

When all instances were selected, most of the training set

needed to be encoded to reach its peak performance. Yet

that performance was in the range of 16% more error

than the selective model. Maximum performance for the

two models was 7.48% error for the selective model with

recruitment at ρ = 0.77, and 22.94% error at ρ = 0.85 for

the aggregate model. This experimental result demonstrates

how conflict in representation relates to encoding demands

during learning, and to generalization performance during

classification. The selection of many representations can be

considered as generating conflict since the representations

belong to many different classes. When there is more

conflict in the system, more specific information needs to be

encoded in order to overcome the effects of the competing

representations at the output. By reducing conflict in the

system, generalization improves and the need to encode

information is also minimized.

The node recruitment value of ρ = 0.85 was used to

investigate the full range of σ sample range values on

a training set of 3,500. As depicted in Fig. 4, a small

sample range produced the best generalization under these

settings, before quickly dropping off with larger samples. This

likely indicates a protective effect against outlier instances

in memory when selecting a small range of options, as

is common in kNN approaches. However, the overall trend

indicates that reducing conflict in representations leads to

better generalization performance.

A set of parameter values for selection, σ = 0.09, and

recruitment, ρ = 0.64, were chosen as a good representative

trade-off between generalization performance and encoding

requirements. These were selected by comparing training set

performances under different parameter settings. When run on

the full training set of 60,000 examples it yielded a test set

performance of 2.63% error with 24.12% (14,470 instances) of

the training set encoded. Setting the contrast cut-off value to

70 (instead of 30) produces a test error of 2.38% with 34.47%

encoded. These error rates are comparable to two-layer

RBM (distributed representation network) performance of

2.49% [12], and the kNN benchmark performance of 2.83%

error [28]. Given the crudeness of selection mechanisms for

selecting information for encoding in the current scheme,

Fig. 4 The relationship between representational selectivity (σ) and
recognition accuracy on the test set

such similarity in performance appears to justify the view

that hierarchical representations in distributed representation

networks are acting like a content-addressable memory.

C. Conflict & Confidence

The relationship between conflict and classification

performance was explored descriptively. Using the balanced

trade-off parameters of σ = 0.09 and ρ = 0.64 on a

fully supervised training set of 60,000, it was found that

significantly more instances were selected on incorrect trials

(M = 15.98 ± 1.59: 95% confidence interval) than correct

trials (M = 10.07 ± 0.17). More classes were represented

in the selections of the incorrect trials (M = 3.46 ± 0.19:

95% confidence interval) than on correct trials (M = 1.61 ±
0.02), and the average activation value (i.e., similarity) was

significantly weaker on incorrect trials (M = 0.58±0.01: 95%

confidence interval) than on correct trials (M = 0.65±0.001).

All these indicators can be combined to indicate judgement

confidence. For example, a confidence metric, C, was tested

using the following

C = Aaverage · |Smax|
|S| (3)

where Aaverage is the average activation strength of the

selected instances, |Smax| is the maximum number of

instances selected in a single class, and |S| is the total number

of instances selected across all classes. This metric indicates

confidence when selected instances have high similarity to

the input and are disproportionately within a single class in

memory. By applying a confidence threshold, it can be seen

in Fig. 5 that a low error rate of 0.60% could be obtained

while responding to 90.54% of the test set. This result appears

consistent with work that uses statistical confidence to pick

the number of neighbours in kNN [18]. This metric requires

validation on additional datasets.

The confidence metric can be used to judge certainty

in a classification response, and thus also as a signal to

request supervisory input. Using the full training set of

60,000 examples, the system was set to request supervision
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Fig. 5 Judgment confidence effect on test error (blue, left axis) and proportion of test set trials (orange, right axis): At a confidence threshold of 0.5, a low
test-error of 0.60% can be obtained on a substantial proportion of trials (90.54%)

only if confidence was C < 0.4. The balanced parameters

of σ = 0.09 and ρ = 0.64 were again used. In this

configuration memorization only occurred when classification

judgement lacked confidence and there was no suitably active

instance in memory with the correct class label. The resulting

system requested supervision for 10,999 examples (18.33%)

of the 60,000 example training set. The system memorized a

total of 7,548 examples or 52.16% of the 14,470 examples

memorized when all trials were supervised. These reductions

to supervisory input and memory demand came with only

minimal detriment to classification performance. The system

achieved an error rate of 2.78% on the test set, compared to

2.63% with full supervision. The system responded confidently

on 84.89% of test trials with an error rate of only 0.48%

on these trials. The remaining 15.11% of unconfident trials

had an error rate of 15.22%. This result demonstrates that the

confidence metric is effective in separating low and high error

rate trials during performance.

V. DISCUSSION

While high levels of conflict are generally detrimental to

classification performance, allowing some level of conflict may

be advantageous in terms of internal monitoring. Selecting

a range of representations indicates input instances that

are ambiguous when the representations have conflicting

implications. The degree of conflict between selected

representations can be used as a metric of judgement

confidence, in line with suggestions from recent literature

[15]. The inclusion of indicators of conflict and confidence

in classification systems conveys some attractive properties.

Firstly, it provides a mechanism for synergistic machine

learning systems in applied settings. After some initial

training, operationally sound confidence levels could be set,

and clear cases of recognition could be automated. Ambiguous

cases could then be flagged for human intervention, which

in turn can act as supervised training data for improving the

machine learning system.

The monitoring of conflict in representation is also

important as it suggests developing conflict resolution

mechanisms into ANNs. For example, hierarchical re-entrant

architecture has long proven to be effective in using contextual

information to resolve conflicts in cases of ambiguity such

as visual occlusions [24]. Such architectures are popular in

cognitive science for explaining vision [35] and tie into

broader concepts of interactions between bottom-up and

top-down sources of attention, such as Adaptive Resonance

[30]. In a computer vision setting, it is seen as the interaction

between discriminative and generative approaches [36].

Conflict signals can also be used to drive learning

algorithms. Intuitively, contrasts between conflicting instances

in memory can draw out discriminative features that either

indicate inclusion or exclusion from a given class (or

representational unit). Such contrasts are being pursued in

supervised contrastive learning [37], however it is unclear

to what extent difficult edge cases are captured using

current approaches. Conflict and contrasts may also present

opportunities to move away from optimization driven learning

algorithms. Learning algorithms could instead focus on the

principle of information encoding. Conceptually, this would be

a more constructive process of finding free memory traces than

optimization. This may reduce the need to process training sets

multiple times, and open opportunities for extendable stream

learning systems within an ANN framework.
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VI. CONCLUSION

This paper provided an interpretation of ANN problem

solving logic on classification problems. In a nutshell, input

data are matched to fragments of instances that were encoded

from the training set. Similar fragments are stored together

in representational units or regions of vector space. This

captures statistical variances and allows for data compression.

Combining fragments across successive layers allows for neat

separation into classes at the output. The networks thus

act as a content-addressable memory for training instances

and their mappings to classes. The degree of localization

(i.e., convolutional filters) or distribution (i.e., fully connected

layers) appears to affect the degree to which veridical memory

can be supported.

The paper also presented results from experiments that

showed a relationship between representational conflicts,

generalization performance, and encoding requirements in

an instance memory network. Selecting small samples from

memory was found to improve generalization performance,

and reduce memorization requirement. The experiment also

showed how monitoring conflict could be used to measure

confidence that could be used to control error rates in

responses. By using judgement confidence to guide supervised

learning, supervisory input was substantially reduced as were

the number of instances requiring memorization with only

minimal detrimental effects on classification performance.
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