Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Ecological Networks: From Structural Analysis to Synchronization
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.Keywords: Ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108807
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997References:
[1] M. Cody, Diamond (Ed) Ecology and Evolution of Communities. Belknap Press, 1975, New York.
[2] S.L. Pimm, Food Webs, 2nd ed, Chicago University Press New York, 2002.
[3] R.V. Solé, J.M., Montoya, “Complexity and fragility in ecological networks.” Proc. R. Soc. Lond no. 268, 2001 pp. 2930-2945.
[4] J. Bascompte, P. Jordano, C.J. Melian, J.M. Olesen, “The nested assembly of plant animal mutualistic networks” Proc. Natl. Acad. Sci. USA no. 100, 2003, pp. 9383-9387.
[5] P.R. Guimarães, G., Machado de Aguiar, M. A.M, Jordano, J. Bascompte., Pinheiro. J, S. F. A. dos Reis. “Build-up mechanisms determining the topology of mutualistic networks, Journal of Theoretical Biology” no. 249, 2007, pp. 181-189.
[6] E. Thebault, C. Fontaine. “Does asymmetric specialization differ between mutualistic and trophic networks?” Oikos, no 117, 2008, pp. 555-563.
[7] DP. Vazquez, R., Poulin, B.R. Krasnov, G., I. Shenbrot. “Species abundance and the distribution of specialization in host-parasite interaction networks, Journal of Animal Ecology” no. 74, 2005, pp. 946- 955.
[8] A.R.E. Sinclair, S. M. Duma, J.S. Brashares. “Patterns of predation in a diverse predator-prey system, Nature no.425, 2003, pp. 288-290.
[9] B. J.M. Bohannan. “Linking genetic change to community evolution: insights studies of bacteria and bacteriophage”. Ecology Letters no. 3, 2000, pp. 464-464.
[10] G. Caldarelli, D. Garlaschelli, L. Pietronero. “Food Web Structure and the Evolution of Complex network”. Pastor-Satorras., R. Diaz-Guilera. A. (Eds) no. 625, 2003, pp. 148-166.
[11] G. Bell, “The evolution of trophic structure.” Heredity no.99, 2007, pp. 494-505.
[12] J.L. Garcia-Domingo, J. Saldaña, “Food-web complexity emerging from ecological dynamics on adaptive networks”. Journal of Theoretical Biology no.247 (4), 2007, pp. 819-826.
[13] J.O. Riede, C.B. Banasek-Richter, S.A. Navarrete, M.C. Wieters, Emmerson, U. Jacob, U. Brose, “Scalingof Food-Web Properties with Diversity and Complexity across Ecosystems”. Advances in Ecological Research no.42, 2010, pp. 139-166.
[14] R. Linderman “The tropic-dynamic aspect of ecology”. Ecology no.23, 1942, pp. 399-418.
[15] S.H. Strogatz “From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena”., vol. 43, no. 1, 2008, pp. 1-20.
[16] H. Fujisaka, T.Yamada, “Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics” 69, no.1, 1983, pp. 32-47.
[17] L.M. Pecora, T.L. Carrol , “Synchronization in chaotic systems. Physical Review Letters” 64, no. 8, 1990, pp. 821-824.
[18] M.Schatz Bennett, F. Rockwood, K.Wiesenfeld. “Huygens’s clocks, Proceedings of the Royal Society”, A 458, 2009 pp. 563-579.
[19] T. Danino, O. Mondragón-Palomino, L. Tsimring, J. Hasty. “A synchronized quorum of genetic clocks.” Nature no. 463 (7279), 2010, pp. 326-330.
[20] A. Arenas, A. Dias-Guilera, J. Kurths, Y. Zhou. “Synchronization in complex networks. Physics Reports no. 469 (3), 2008, pp. 93-153.
[21] A. Vladimirov, G. Kozyreff, P. Mandel. “Synchronization of weakly stable oscillators and semiconductor laser arrays”. Europhysics Letters, no. 61, 2003, pp. 613-619.
[22] K. Wiesenfeld, P. Colet, S. Strogatz. “Synchronization transitions in a disordered Josephson series array. Physical Review Letters”. No. 76, 1996, pp. 404-407.
[23] W. Lewandowski, J. Azoubib, W. Klepczynski “W.GPS: primary tool for time transfer.Proceedings of the IEEE” no. (87), 1999, pp. 163-172.
[24] D. Li, K. Wong, Y. Hu, A. Sayeed. “Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazine”. no. 19, 2002, pp. 17-19.
[25] Y. Jian, et al. “Notch signalling and the synchronization of the somite segmentation clock”. Nature no.408, 2000, pp. 475-478.
[26] L. Glass. “Synchronization and rhythmic processes in physiology”. Nature, no. 410, 2001, pp. 277-284.
[27] J. Chabot, J. Pedraza, P. Luitel, A.A. van Oudenaarden. “Stochastic gene expression out-of-steady-state in thecyanobacterial circadian clock”. Nature no. 450, 2007, pp. 1249-1252.
[28] L. Schimansky-Geier. “Analysis and Control of Complex Nonlinear Processes in Physics Chemistry and Biology” World Scientific Jan. 2007.
[29] F. Grenier, I. Timofeev, M. Steriade. “Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates”. Journal of Neurophysiology no. 89, 2003, pp 841.
[30] C. Rulquin, J.J, Arenson. “Globally synchronized oscillations in complex cyclic games”. Phys. Rev. No. 89, 2014, pp. 032-133.
[31] L. Stone, R. Olinky, B. Blasius, A. Huppert, B. Cazelles. “Complex Synchronization Phenomenon in Ecological Systems”. CP 622 Experimental Chaoses: 6th Experimental Chaos Conference. Edited by S. Boccaletiet al. 2002.
[32] C.J. Krebs, R. Boonstra, S. Boutin, A.R.E, Sinclair. “What drives the 10- year Cycle of Snowshoe Hares?” BioScience no.51 (1), 2001, pp. 25-35.
[33] C.A. Charles A. Boch, B. Ananthasu, A.M. Sweeney, F.J. Doyle III, D.E. Morse. “Effects of Light Dynamics on Coral Spawning Synchrony. Biol Bul1”.no. 220 (3), 2013, pp. 161-173.
[34] T.C. Gouhier, F. Guichard, B.A. Menge. “Ecological processes can synchronize marine population dynamics over continental scales”, PNAS. 1-6. Doi/10.1073/pnas. 0914588107, 2010.
[35] T.C. Gouhier, F. Guichard, A. Gonzalez. “Synchrony and Stability of Food Webs in Metacommunities. American Naturalist” no. 175 (2) 2010, pp. 16-34.
[36] G.C. Pereira, L.P. Andrade, R.P. Espínola, N.F.F. Ebecken. “Structural Analysis and Static Simulation of Coastal Planktonic Network”, Journal of Intelligent Learning Systems and Applications (6), 2014b, pp 113- 124.
[37] J. Timothy Ross. “Fuzzy Logic with Engeneering Applications”, 2nd ed. WestSussex, England, John Wiley & Sons, Ltd, 2004.
[38] L.P. Andrade. “Fuzzy Modeling of Plankton Networks”, PhD Thesis, Federal University of Rio de Janeiro. 2014.
[39] M. Dorigo, T. Stützle. “Ant Colony Optimization Massachusetts, MIT Press, Massachusetts” 2004.
[40] D. Jin “Ant Colony Optimization with Markov Random Walk for Community Detection in Graphs”. J.Z., In Huang.
[41] Y. Liu, Lian L., Junyong L. “Adaptive Ant Colony Clustering Method Applied to Finding Closely Communicating Community” Journal of Networks, vol. 7 no. 2, 2012, pp. 249-258.
[42] L.B. Romdhane, Y. Chaabani, H. Zardi. “A robust ant colony optimization-based algorithm for community mining in large scale oriented social graphs”, Expert Systems with Applications, no. 40 (14), 2013, pp. 5709-5718.
[43] B. Cazelles and Boudjema. “The Moran effect and phase synchronization in complex spatial community dynamics”. Amer Nat., no. 157, 2001, pp. 670-676.
[44] A. L. Lloyd and R.M. May. “Synchronicity, chaos and population cycles: Spatial coherence in an uncertain world”. Trends Ecol. Evol. No. 14, 1999, pp. 417-418.
[45] Y.A. Kuznetsov, O. De Feo and Rinaldi. “Belyakov homoclinic bifurcations in a tritrophic fod chain model”. SIAM J. Appl. Math., no. 62, 2001, pp. 462-487.
[46] B. Cazelles, S. Bottani, L. Stone. “Unexpected coherence and conservation”. Proc. Roy. Soc. Lond. No 268, 2001, pp. 2595-2602.
[47] I. Belykh, C., Piccardi, S. Rinaldi. “Synchrony in tritrophic food chain metacommunities”. Journal of Biological Dynamics no.3 (5), 2009, pp. 497-514.
[48] Y. Kuramoto. “Self-entrainment of a population of coupled nonlinear oscillators. In: Symposium on Mathematical Problems in Theoretical Physics”. Lecture Notes in Physics, 1975, pp. 420-422.
[49] J.W. Duncan. “Small Worlds: The Dynamics of Networks between Order and Randomness.” Princeton University Press, 1999, 262 pages.
[50] H. Hong, M.Y. Choi, B.J. Kim. “Synchronization on small world networks.” Physical Review E, vol. 65 no. 2, 2002, pp. 026-139.
[51] J. Gomez-Gardenes, Y. Moreno, A. Arenas. “Paths to synchronization on complex networks”. Phys Rev Lett, vol. 98 no. 3, 2007, pp. 034-101.