Search results for: statistical weather prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2304

Search results for: statistical weather prediction

354 Customers’ Perception towards the Service Marketing Mix and Frequency of Use of Mercedes Benz Automobile Service, Thailand

Authors: Pranee Tridhoskul

Abstract:

This research paper is aimed to examine a relationship between the service marketing mix and customers’ frequency of use of service at Mercedes Benz Auto Repair Centres under Thonburi Group, Thailand. Based on 2,267 customers who used the service of Thonburi Group’s Auto Repair Centres as the population, the sampling of this research was a total of 340 samples, by use of Probability Sampling Technique. Systematic Random Sampling was applied by use of questionnaire in collecting the data at Thonburi Group’s Auto Repair Centres. Mean and Pearson’s basic statistical correlations were utilized in analyzing the data. The study discovered a medium level of customers’ perception towards product and service of Thonburi Group’s Auto Repair Centres, price, place or distribution channel and promotion. People who provided service were perceived also at a medium level, whereas the physical evidence and service process were perceived at a high level. Furthermore, there appeared a correlation between the physical evidence and service process, and customers’ frequency of use of automobile service per year.

Keywords: Service Marketing Mix, Behavior, Mercedes Auto Service Centre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
353 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30d B SNR as a reference for voice activity.

Keywords: Atomic Decomposition, Gabor, Gammatone, Matching Pursuit, Voice Activity Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
352 Optimizing Dialogue Strategy Learning Using Learning Automata

Authors: G. Kumaravelan, R. Sivakumar

Abstract:

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
351 Actionable Rules: Issues and New Directions

Authors: Harleen Kaur

Abstract:

Knowledge Discovery in Databases (KDD) is the process of extracting previously unknown, hidden and interesting patterns from a huge amount of data stored in databases. Data mining is a stage of the KDD process that aims at selecting and applying a particular data mining algorithm to extract an interesting and useful knowledge. It is highly expected that data mining methods will find interesting patterns according to some measures, from databases. It is of vital importance to define good measures of interestingness that would allow the system to discover only the useful patterns. Measures of interestingness are divided into objective and subjective measures. Objective measures are those that depend only on the structure of a pattern and which can be quantified by using statistical methods. While, subjective measures depend only on the subjectivity and understandability of the user who examine the patterns. These subjective measures are further divided into actionable, unexpected and novel. The key issues that faces data mining community is how to make actions on the basis of discovered knowledge. For a pattern to be actionable, the user subjectivity is captured by providing his/her background knowledge about domain. Here, we consider the actionability of the discovered knowledge as a measure of interestingness and raise important issues which need to be addressed to discover actionable knowledge.

Keywords: Data Mining Community, Knowledge Discovery inDatabases (KDD), Interestingness, Subjective Measures, Actionability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
350 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, medial temporal atrophy, LOO Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
349 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method

Authors: Zoe Chang, Max Williams, Gautham Das

Abstract:

The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.

Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 557
348 Influence of Taguchi Selected Parameters on Properties of CuO-ZrO2 Nanoparticles Produced via Sol-gel Method

Authors: H. Abdizadeh, Y. Vahidshad

Abstract:

The present paper discusses the selection of process parameters for obtaining optimal nanocrystallites size in the CuOZrO2 catalyst. There are some parameters changing the inorganic structure which have an influence on the role of hydrolysis and condensation reaction. A statistical design test method is implemented in order to optimize the experimental conditions of CuO-ZrO2 nanoparticles preparation. This method is applied for the experiments and L16 orthogonal array standard. The crystallites size is considered as an index. This index will be used for the analysis in the condition where the parameters vary. The effect of pH, H2O/ precursor molar ratio (R), time and temperature of calcination, chelating agent and alcohol volume are particularity investigated among all other parameters. In accordance with the results of Taguchi, it is found that temperature has the greatest impact on the particle size. The pH and H2O/ precursor molar ratio have low influences as compared with temperature. The alcohol volume as well as the time has almost no effect as compared with all other parameters. Temperature also has an influence on the morphology and amorphous structure of zirconia. The optimal conditions are determined by using Taguchi method. The nanocatalyst is studied by DTA-TG, XRD, EDS, SEM and TEM. The results of this research indicate that it is possible to vary the structure, morphology and properties of the sol-gel by controlling the above-mentioned parameters.

Keywords: CuO-ZrO2 Nanoparticles, Sol-gel, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
347 Estimation of Forest Fire Emission in Thailand by Using Remote Sensing Information

Authors: A. Junpen, S. Garivait, S. Bonnet, A. Pongpullponsak

Abstract:

The forest fires in Thailand are annual occurrence which is the cause of air pollutions. This study intended to estimate the emission from forest fire during 2005-2009 using MODerateresolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites, experimental data, and statistical data. The forest fire emission is estimated using equation established by Seiler and Crutzen in 1982. The spatial and temporal variation of forest fire emission is analyzed and displayed in the form of grid density map. From the satellite data analysis suggested between 2005 and 2009, the number of fire hotspots occurred 86,877 fire hotspots with a significant highest (more than 80% of fire hotspots) in the deciduous forest. The peak period of the forest fire is in January to May. The estimation on the emissions from forest fires during 2005 to 2009 indicated that the amount of CO, CO2, CH4, and N2O was about 3,133,845 tons, 47,610.337 tons, 204,905 tons, and 6,027 tons, respectively, or about 6,171,264 tons of CO2eq. They also emitted 256,132 tons of PM10. The year 2007 was found to be the year when the emissions were the largest. Annually, March is the period that has the maximum amount of forest fire emissions. The areas with high density of forest fire emission were the forests situated in the northern, the western, and the upper northeastern parts of the country.

Keywords: Emissions, Forest fire, Remote sensing information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
346 Deterioration Assessment Models for Water Pipelines

Authors: L. Parvizsedghy, I. Gkountis, A. Senouci, T. Zayed, M. Alsharqawi, H. El Chanati, M. El-Abbasy, F. Mosleh

Abstract:

The aging and deterioration of water pipelines in cities worldwide result in more frequent water main breaks, water service disruptions, and flooding damage. Therefore, there is an urgent need for undertaking proper maintenance procedures to avoid breaks and disastrous failures. However, due to budget limitations, the maintenance of water pipeline networks needs to be prioritized through efficient deterioration assessment models. Previous studies focused on the development of structural or physical deterioration assessment models, which require expensive inspection data. But, this paper aims at developing deterioration assessment models for water pipelines using statistical techniques. Several deterioration models were developed based on pipeline size, material type, and soil type using linear regression analysis. The categorical nature of some variables affecting pipeline deterioration was considered through developing several categorical models. The developed models were validated with an average validity percentage greater than 95%. Moreover, sensitivity analysis was carried out against different classifications and it displayed higher importance of age of pipes compared to other factors. The developed models will be helpful for the water municipalities and asset managers to assess the condition of their pipes and prioritize them for maintenance and inspection purposes.

Keywords: Water pipelines, deterioration assessment models, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
345 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: Area-based traffic, car-following model, micro-simulation, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
344 Quantifying Landscape Connectivity: A GIS-based Approach

Authors: Siqing S. Chen

Abstract:

Landscape connectivity combines a description of the physical structure of the landscape with special species- response to that structure, which forms the theoretical background of applying landscape connectivity principles in the practices of landscape planning and design. In this study, a residential development project in the southern United States was used to explore the meaning of landscape connectivity and its application in town planning. The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. Based on geographic information system (GIS) and statistical analysis (FRAGSTAT), this study attempts to quantify the landscape connectivity characterized by hedgerows in south Alabama where substantial areas of authentic hedgerow landscape are being urbanized due to the ever expanding real estate industry and high demand for new residential development. The results of this study shed lights on how to balance the needs of new urban development and biodiversity conservation by maintaining a higher level of landscape connectivity, thus will inform the design intervention.

Keywords: Biodiversity, Connectivity, Landscape planning, GIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4500
343 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, Welded medium-walled I-shaped sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
342 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years

Authors: Somruedee Pongsena

Abstract:

The purpose of this study is to follow – up the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects were Ethics and Moral, Knowledge, Cognitive Skills, Interpersonal Skill and Responsibility, Numerical Analysis as well as Communication and Information Technology Skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t- tests, and F- tests. The findings showed that samples were mostly female had less than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and experience range were 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of, the hypothesis testing’s result indicate gender only had different opinion at a significance level of 0.05.

Keywords: Follow up, Graduates, knowledge, opinion, Work performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
341 Geostatistical Analysis and Mapping of Groundlevel Ozone in a Medium Sized Urban Area

Authors: F. J. Moral García, P. Valiente González, F. López Rodríguez

Abstract:

Ground-level tropospheric ozone is one of the air pollutants of most concern. It is mainly produced by photochemical processes involving nitrogen oxides and volatile organic compounds in the lower parts of the atmosphere. Ozone levels become particularly high in regions close to high ozone precursor emissions and during summer, when stagnant meteorological conditions with high insolation and high temperatures are common. In this work, some results of a study about urban ozone distribution patterns in the city of Badajoz, which is the largest and most industrialized city in Extremadura region (southwest Spain) are shown. Fourteen sampling campaigns, at least one per month, were carried out to measure ambient air ozone concentrations, during periods that were selected according to favourable conditions to ozone production, using an automatic portable analyzer. Later, to evaluate the ozone distribution at the city, the measured ozone data were analyzed using geostatistical techniques. Thus, first, during the exploratory analysis of data, it was revealed that they were distributed normally, which is a desirable property for the subsequent stages of the geostatistical study. Secondly, during the structural analysis of data, theoretical spherical models provided the best fit for all monthly experimental variograms. The parameters of these variograms (sill, range and nugget) revealed that the maximum distance of spatial dependence is between 302-790 m and the variable, air ozone concentration, is not evenly distributed in reduced distances. Finally, predictive ozone maps were derived for all points of the experimental study area, by use of geostatistical algorithms (kriging). High prediction accuracy was obtained in all cases as cross-validation showed. Useful information for hazard assessment was also provided when probability maps, based on kriging interpolation and kriging standard deviation, were produced.

Keywords: Kriging, map, tropospheric ozone, variogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
340 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: Deterioration, simulation, subcontracting, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
339 A Quantitative Tool for Analyze Process Design

Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río

Abstract:

Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.

Keywords: Characteristics matrix, covariance structure analysis, LISREL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
338 Effect of Be, Zr and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)

Authors: Mahmoud M. Tash

Abstract:

The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.

Keywords: Casting, Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys, Be- and/or Zr-Treatment, Experimental Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
337 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Ismail Saritas, Sadiye Didem Boztepe Erkis, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modelled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the developed system, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), and fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: Artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
336 Influence of Improved Roughage Quality and Period of Meal Termination on Digesta Load in the Digestive Organs of Goats

Authors: Rasheed A. Adebayo, Mehluli M. Moyo, Ignatius V. Nsahlai

Abstract:

Ruminants are known to relish roughage for productivity but the effect of its quality on digesta load in rumen, omasum, abomasum and other distal organs of the digestive tract is yet unknown. Reticulorumen fill is a strong indicator for long-term control of intake in ruminants. As such, the measurement and prediction of digesta load in these compartments may be crucial to productivity in the ruminant industry. The current study aimed at determining the effect of (a) diet quality on digesta load in digestive organs of goats, and (b) period of meal termination on the reticulorumen fill and digesta load in other distal compartments of the digestive tract of goats. Goats were fed with urea-treated hay (UTH), urea-sprayed hay (USH) and non-treated hay (NTH). At the end of eight weeks of a feeding trial period, upon termination of a meal in the morning, afternoon or evening, all goats were slaughtered in random groups of three per day to measure reticulorumen fill and digesta loads in other distal compartments of the digestive tract. Both diet quality and period affected (P < 0.05) the measure of reticulorumen fill. However, reticulorumen fill in the evening was larger (P < 0.05) than afternoon, while afternoon was similar (P > 0.05) to morning. Also, diet quality affected (P < 0.05) the wet omasal digesta load, wet abomasum, dry abomasum and dry caecum digesta loads but did not affect (P > 0.05) both wet and dry digesta loads in other compartments of the digestive tract. Period of measurement did not affect (P > 0.05) the wet omasal digesta load, and both wet and dry digesta loads in other compartments of the digestive tract except wet abomasum digesta load (P < 0.05) and dry caecum digesta load (P < 0.05). Both wet and dry reticulorumen fill were correlated (P < 0.05) with omasum (r = 0.623) and (r = 0.723), respectively. In conclusion, reticulorumen fill of goats decreased by improving the roughage quality; and the period of meal termination and measurement of the fill is a key factor to the quantity of digesta load.

Keywords: Digesta, goats, meal termination, reticulorumen fill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
335 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
334 Hybrid Living: Emerging Out of the Crises and Divisions

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.

Keywords: Social ritual scenographies, spontaneous urban landscapes, substantial hybrid entities, re-introduction of natural phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
333 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
332 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo

Abstract:

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Keywords: RSM, dependent variable, independent variables, efficiency, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
331 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model

Authors: Bi-Huei Tsai

Abstract:

This work explores the inter-region investment behaviors of Integrated Circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. The analysis results show that FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. Because the supply chain along IC industry includes upstream IC design, midstream manufacturing, as well as downstream packing and testing enterprises, IC design industry has to cooperate with IC manufacturing, packaging and testing industries in the same area to form a strong IC industrial cluster. Taiwan’s IC design industry implement the largest FDI amount into East China and the second largest FDI amount into South China among the four regions: North, East, Mid-West and South China. If IC design houses undertake more FDIs in South China, those in East China are urged to incrementally implement more FDIs into East China to maintain the competitive advantages of the IC supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. In addition, this investigation proves that the prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.

Keywords: Lotka-Volterra model, Foreign direct investment, Competitive, Equilibrium analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
330 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: Big data analytics, Industry 4.0, SPI threshold setting, surface mount technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
329 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, marine sediment, bathymetry, grain size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
328 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
327 Visitors’ Attitude towards the Service Marketing Mix and Frequency of Visits to Bangpu Recreation Centre, Thailand

Authors: Siri-Orn Champatong

Abstract:

This research paper was aimed to examine the relationship between visitors’ attitude towards the service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre. Based on a large and uncalculated population, the number of samples was calculated according to the formula to obtain a total of 385 samples. In collecting the samples, systematic random sampling was applied and by using of a Likert five-scale questionnaire for, a total of 21 days to collect the needed information. Mean, Standard Deviation, and Pearson’s basic statistical correlations were utilized in analyzing the data. This study discovered a high level of visitors’ attitude product and service of Bangpu Recreation Centre, price, place, promotional activities, people who provided service and physical evidence of the centre. The attitude towards process of service was discovered to be at a medium level. Additionally, the finding of an examination of a relationship between visitors’ attitude towards service marketing mix and visitors’ frequency of visit to Bangpu Recreation Centre presented that product and service, people, physical evidence and process of service provision showed a relationship with the visitors’ frequency of visit to the centre per year.

Keywords: Frequency of Visit, Visitor, Service Marketing Mix, Bangpu Recreation Centre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
326 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient

Authors: Sobhy Fathy A. Hashesh

Abstract:

This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: ANPT, Flipped Classroom, 5Es learning Model, Kagan structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
325 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744