
 

 

   
Abstract—Ground-level tropospheric ozone is one of the air 

pollutants of most concern. It is mainly produced by photochemical 
processes involving nitrogen oxides and volatile organic compounds 
in the lower parts of the atmosphere. Ozone levels become 
particularly high in regions close to high ozone precursor emissions 
and during summer, when stagnant meteorological conditions with 
high insolation and high temperatures are common.  

In this work, some results of a study about urban ozone 
distribution patterns in the city of Badajoz, which is the largest and 
most industrialized city in Extremadura region (southwest Spain) are 
shown. Fourteen sampling campaigns, at least one per month, were 
carried out to measure ambient air ozone concentrations, during 
periods that were selected according to favourable conditions to 
ozone production, using an automatic portable analyzer. 

Later, to evaluate the ozone distribution at the city, the measured 
ozone data were analyzed using geostatistical techniques. Thus, first, 
during the exploratory analysis of data, it was revealed that they were 
distributed normally, which is a desirable property for the subsequent 
stages of the geostatistical study. Secondly, during the structural 
analysis of data, theoretical spherical models provided the best fit for 
all monthly experimental variograms. The parameters of these 
variograms (sill, range and nugget) revealed that the maximum 
distance of spatial dependence is between 302-790 m and the 
variable, air ozone concentration, is not evenly distributed in reduced 
distances. Finally, predictive ozone maps were derived for all points 
of the experimental study area, by use of geostatistical algorithms 
(kriging). High prediction accuracy was obtained in all cases as 
cross-validation showed. Useful information for hazard assessment 
was also provided when probability maps, based on kriging 
interpolation and kriging standard deviation, were produced. 
 

Keywords—Kriging, map, tropospheric ozone, variogram. 

I. INTRODUCTION 
N increasing ozone concentration has been observed in 
many European countries, from Scandinavia and Britain 

to Spain [1]-[3]. Some measurements in Spain, particularly in 
the Mediterranean region, have shown high tropospheric 
ozone concentrations [4], [5]. Ground ozone levels is a topic 
of considerable environmental concern, since excessive level 
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of ozone are taken as indicative of high pollution. 
Ozone at ground level – in the air we breathe – is not to be 

confused with the ozone layer in the upper atmosphere, which 
shields the Earth from the sun's ultraviolet rays. Up there 
ozone is “good”; at ground level it is “bad”. 

Human activites have led to much higher ground-level 
ozone concentrations in Europe today than in the pre-
industrial era. In the troposphere, near the Earth's surface, 
human activities lead to ozone concentrations several times 
higher than the natural background level. Too much of this 
ground-level ozone is “bad” as it is harmful to breathe and 
also damages the environment. When ozone mixes with other 
air pollutants, especially nitrogen oxides and particulate 
matter, it can form a harmful smog. This smog occasionally 
takes place in polluted city areas. 

Tropospheric ozone levels in Europe continue to exceed 
both target values and the long-term objectives established in 
EU legislation to protect human health and prevent damage to 
ecosystems, agricultural crops and materials [6]. In addition, 
ozone is a greenhouse gas which may have important global 
climatic consequences. 

Ozone is a natural component of the troposphere, produced 
by photochemical reactions of nitrogen oxides and volatile 
organic compounds (VOC), collectively called ozone 
precursors, enhanced by temperature and sunlight. Emissions 
from car exhausts, power plants and industrial facilities are the 
major sources of nitrogen oxides and VOC. Since 1990 
approximately, emissions of ozone precursors in the European 
Union have declined about 30%, due mainly to the widespread 
introduction of catalytic converters in cars and new laws to 
reduce air pollution. However, this has not resulted in 
comparable decrease in ozone levels, particularly in city 
centres, which could be explained by the dependence of ozone 
generation on climatic conditions and complex chemical 
processes. 

Lelieveld and Detener [7] suggest that around 70% of the 
tropospheric ozone is photochemically produced within the 
troposphere itself, and about half of this ozone is 
anthropogenic; only the rest, 30%, is originated from the 
stratosphere. In the Mediterranean region, these percentages 
are higher: 90% of the tropospheric ozone is generated in situ 
and the anthropogenic fraction is around 75% [2]. 

The reactive nature and the photochemical origin of ozone 
generate important temporal (hourly, daily, seasonally and 
annually) and spatial variations in its concentrations. 
Chemical reactions involving ozone formation (and removal) 
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occur within a time interval of a few hours and over tens of 
kilometers, and during the next weeks after its generation it 
can be transported by the wind to hundreds of kilometers. 

Although annual variation in tropospheric ozone depends 
on different factors, as proximity to large source areas of NOx 

and VOC, meteorological conditions and geographical 
location [8], a clear annual cycle over mid-latitudes, with a 
broad summer maximum in populated and industrialized areas 
or a spring maximum in rural zones, is apparent. The summer 
maximum is related to local photochemical productions [9], 
when stagnant meteorological conditions with high insolation 
and high temperatures take place, whereas the spring 
maximum is attributed to enhanced photochemical reactions 
due to the more important solar radiation which acts on the 
precursors, NOx and VOC, accumulated during the winter 
[10]. According to Monks [11], the maximum ozone levels 
has increased over the last two decades. 

The daily pattern of tropospheric ozone is driven mainly by 
the cycle of NOx and hydrocarbon emissions as well as by the 
solar radiation [12]. During the day, ozone concentrations will 
usually build up and peak in the afternoon. At nighttime ozone 
concentrations decline. 

Generally, ozone concentrations peak in summertime and in 
the afternoon, because the formation of ozone needs sunlight. 

Ground level ozone has been studied extensively in recent 
years (e.g. Cocchi and Trevisano [13] provide a critical review 
of the different approaches) with the aim of getting more 
accurate predictive models and the need to take confounding 
effects into account when ozone trends and the health effects 
of ozone are investigated. However, studies about the 
temporal y/o spatial variability of ground level ozone are very 
limited [1], [14], and, as far as we know, there is no any work 
where a detailed, small-scale variability of this pollutant is 
analyzed in a city, probably due to the difficulty of obtaining 
enough measurements. 

At the present time, ozone is measured at thousands of 
stationary monitors scattered across Europe, most of which are 
located in urban areas. In Spain, there are also an important 
number of monitoring stations, with uneven densities 
depending on the different regions. But, in all cases, they are 
insufficient to perform a precise study about the spatial 
distribution of tropospheric ozone. Only the tendencies at 
regional levels, at the very best, can be analyzed, as tens of 
kilometers of spatial resolution is available. 

It is known how monitoring atmospheric pollution in urban 
areas involves mapping techniques that assist the decision-
maker to describe and quantify the pollution at locations 
where no measurements were available. The preparation of 
pollution maps is a complex task, which is only feasible if a 
spatial correlation of the variable of interest is identified [15]. 
The existence of a spatial correlation of atmospheric 
pollutants is not only a condition for an optimum interpolation 
of the data in space in order to generate a map of pollution, 
but it also provides very useful insights on the structure of the 
air quality patterns. Some studies have identified a strong 
spatial variability of air pollutants [16], [17]. The main goal of 

interpolation is to discern the spatial patterns of atmospheric 
pollution concentrations by estimating values at unsampled 
locations based on measurements at sample points. 
Geostatistics provides an advanced methodology to quantify 
the spatial features of the studied variables and enables spatial 
interpolation, kriging [18], [19]. In addition, geographical 
information systems (GIS) and geostatistics have opened up 
new ways to study and analyze spatial distributions of 
regionalized variables, i.e. distributed continuously on space 
[20], [21]. Moreover, they have become useful tools for the 
study of hazard assessment and spatial uncertainty [22]. 
Without a GIS, analysis and management of large spatial data 
bases may not be possible. 

Many air pollution studies have employed distance-
weighting methods, e.g. [23], but kriging is the only one 
which incorporates the spatial correlation into its estimation 
algorithm. Kriging has been used more widely [20], [24] due 
to its many advantages [19]. Although kriging requires an 
abundance of sample points to be an accurate spatial 
interpolation method [25], even when relative small data sets 
and not exhaustive samplings are available it is a reliable 
technique for investigating the distribution and sources of 
pollutants [26]. 

To inform decisions regarding, for instance, the protection 
of public health from elevated ozone levels in a urban area, 
high-resolution maps are necessary. Therefore, the main 
objectives of this paper were to: (1) analyze the temporal 
evolution and characterize the spatial distribution of ground 
ozone levels using geostatistical techniques; (2) incorporate 
this information in a GIS to produce accurate ozone maps; (3) 
assess the hazard of exceeding some limits with a 
geostatistical basis. 

II. MATERIALS AND METHODS 
A. Survey Area. Selection of Sampling Points and Ozone 

Field Measurements 
In this work, some results of urban ozone distribution 

patterns in the city of Badajoz (38º 53' 12" N, 6º 58' 15" W, 
170 meters above mean sea level), a medium-sized ancient 
town which belongs to the Autonomous Community of 
Extremadura, southwestern Spain, are shown (Fig. 1). It is the 
largest (about 140.000 inhabitants) and most industrialized 
city in this region. The town has a strategic situation on the 
Portuguese border and on the Madrid-Lisboa highway. 

In Badajoz, there is only one monitoring station, which is 
continuously measuring ozone levels and other pollutants, 
situated in the northeast of the city (Fig. 2). This station is 
operated by the Department of Environment of the 
Extremaduran Government as part of a network (5 monitoring 
stations) to monitor background air pollution. Thus, the 
information provided by this monitoring station is indicative 
of a “mean” ozone level over the town. Since we are 
interesting in studying the spatial distribution in the town, 
ground-level ozone measurements at different locations have 
to be obtained. Therefore, an automatic portable analyzer, 

World Academy of Science, Engineering and Technology
International Journal of Civil and Architectural Engineering

 Vol:4, No:1, 2010 

47International Scholarly and Scientific Research & Innovation 4(1) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
A

rc
hi

te
ct

ur
al

 E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
1,

 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
05

0.
pd

f



 

 

based on UV absorption, was used to obtain air ozone 
concentration, in parts per billion by volume (ppbV). 

 

 
 
 

  
Fig. 1 Location map of Badajoz, with reference to the Autonomous Community of Extremadura and Spain 

 
 

 
 

Fig. 2 Map of Badajoz city (urban area) and sampling locations (138) 
 

Another important issue is the selection of all locations 
where a sample has to be taken. In the context of ozone 
mapping, a small sampling interval is preferable because it 
facilitates accurate spatial interpolation and it is essential for 
assessing operational scale [27]. Operational scale is the 
spatial extend at which a particular phenomenon operates, 
being inversely related to spatial complexity, i.e., a 
phenomenon with small-scale variations has a small 
operational scale. 

Finally, 138 urban locations were chosen as sample points 

(Fig. 2), covering the majority part of the city and taking into 
account its different characteristic, as inhabitants density, type 
of streets or roads, etc. Sampling interval was not uniform, 
ranging from, approximately, 75 to 500 m. This favours the 
geostatistical study and, in consequence, the interpolation and 
mapping process (see section III). 

 

 
 

Fig. 3 Typical daily evolution of ozone and its main precursors 
 
An additional problem related to ground-level ozone 

measurements is the time interval to be considered. If a 
portable analyzer is used and we are interested in analyzing 
both the spatial patterns and temporal evolution of ground 
ozone levels, measurements have to be carried out when the 
maximum concentrations are apparent. Fig. 3 shows the 
typical daily evolution of ozone and its main precursors. The 
maximum ozone levels are reached at early evening. During 
the morning, traffic flows and industrial activities are very 
important and, consequently, high concentrations of primary 
pollutants, precursors, are produced. Later, temperature and 
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sunlight increases and, in consequence, through 
photochemical reactions, the secondary pollutants (ozone) are 
generated. In the late evening, when temperature and sunlight 
decrease, the ozone generation decreases too. 

To establish the daily time span where maximum ozone 
concentration levels are expected and, consequently, the time 
interval in which samples have to be taken, hourly data from 
the monitoring station corresponding to some typical days are 
analyzed. Fig. 4 shows the temporal evolution of ozone levels 
during three typical spring and summer days. A constant daily 
pattern is apparent: maximum ozone concentrations occur 
from midday to late evening. To define more precisely the 
time interval in which measurements have to be conducted, 
ozone concentrations were measured simultaneously from 10 
a.m. to 10 p.m. approximately during four consecutive days at 
the same locations. As Fig. 5 shows, the patterns are very 
similar for each location and maximum was always obtained 
between 1 p.m. and 8 p.m. approximately. In consequence, 
ground ozone levels will be measured during that time span 
for all sampling campaigns. 

Another interesting observation from Fig. 5 is the 
difference, for the same day, of the maximum ozone values 
for each location. This denotes the existence of a small-scale 
variability in the city. 

When the optimum time interval to measure maximum 
ozone levels was established, successive sampling campaigns, 
at least one per month, were conducted. Thus, data were 
collected at 138 locations in the city of Badajoz during 14 

sampling campaigns, one per month (two in August), which 
were carried out between May 2007 and May 2008. All noise 
measurements were made on working days and under suitable 
meteorological conditions (no cloudy days). Therefore, the 
final data set consists of ground-level ozone measurements 
from 138 locations situated throughout Badajoz. For each 
location, its geographic coordinates were ascertained using a 
GPS device. 

A. Geostatistics 
After obtaining all ground-level ozone measurements, the 

spatial distribution of this pollutant in the city was analyzed 
for each month and later it was necessary to estimate the 
ozone level at other locations where direct measurements were 
not carried out. 

Since the factors that determine the values of environmental 
variables are numerous, largely unknown in detail, and 
interact with a complexity that we can not unravel, we can 
regard their outcomes as random. If a stochastic point of view 
is adopted, then there is not just one value for a property but a 
whole set of values at each point in space. We regard the 
observed value there as one drawn at random according to 
some law, from some probability distribution. 

 

 

 

Fig. 4 Temporal evolution of ground-level ozone during three summer (left) and spring (right) days. Data are from the background 
monitoring station located in Badajoz 
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Fig. 5 Temporal evolution of ground-level ozone at five locations (right) in the city of Badajoz. Data are mean values for four consecutive 
days (April 2007) 

 
This point of view, when the studied variable (maximum 

ground-level ozone) is considered random and distributed 
continuously on the experimental area (regionalized variable), 
is adopted to use geostatistics as an estimation technique. 

It is recognized that the statistic approach, geostatistical 
methods or kriging, has several advantages over the 
deterministic techniques [18], [19]. The fact of giving 
unbiased predictions with minimum variance and taking into 
account the spatial correlation between the data recorded at 
different locations is an important advantage of kriging. 
Moreover, besides interpolation, kriging provides information 
on interpolation errors. Such values can be mapped to 
generate error surfaces which inform about the reliability of 
estimates. Geostatistics can be defined as the set of tools and 
techniques to analyze the spatial patterns and predict at 
unsampled locations the values of a continuous variable 
distributed in space or in time. It is also denominated spatial 
statistics [18], [19]. Geostatistics is based on the theory of 
regionalized variables [28], which show spatial 
autocorrelation such that samples close together in space are 
more alike than those that are further apart. 

In this study, 3 phases were completed to conduct the 
geostatistical work [18]: 

1º) Exploratory analysis of data. Statistics was applied to 
check data consistency, removing outliers and identifying 
statistical distribution where data came from. 

Certain kriging methods work best if the data are 
approximately normally distributed [19]. The histograms and 
normal QQplots can be used to check the normality. 

Furthermore, statistics provide additional numerical 
information to confirm the graphical tendencies shown with 
the histograms and QQplots [29]. 

Outlier is a measured sample point that has a very high or 
low value relative to the values in the dataset. It is important 
to detect outliers because they may be values that were 
measured or recorded incorrectly and, in this case, their 
effects on  

 
subsequent stages of the geostatistical study are very negative 
[20]. One simple way to detect them is selecting points on the 
tails of the distribution and checking whether the extreme 
values are isolated locations, surrounded by very different 
values (then they may require further research and, if 
necessary, be removed), or not [29]. Moreover, high skewness 
values can indicate the existence of outliers. 

2º) Structural analysis of data. Spatial distribution of the 
variable was analyzed. Spatial correlation or dependence can 
be quantified with semivariograms (or variograms). These 
function relate the semivariance, half the expected squared 
difference between paired data values Z(xi) and Z(xi+h), to 
the lag distance, h, by which sample points are separated [18], 
[30]. For discrete sampling locations, the function is estimated 
as: 

{ }∑
=

+−=γ
)h(N

1i

2
ii )hx(Z)x(Z

)h(N2
1)h(                       (1) 

where γ(h) is the experimental semivariance value at distance 
interval h, Z(xi) are the measured sample values at sample 
points xi , in which there are data at xi and xi+h; N(h) is the 
total number of sample pairs within the distance interval h. 
For irregular sampling, h is represented by a distance band 
because the distance between the sample pairs to be exactly 
equal to h is very rare. 

The variogram shows the degradation of spatial correlation 
between two points of space when the separation distance 
increases. This function has two components [18], [19], [30]; 
the first is the nugget effect, which characterizes the 
discontinuity jump observed at the origin of distances, 
quantifies the short-term, erratic variations of the studied 
phenomenon plus measurements and data errors. The second 
is the increasing part of the variogram, which may reach the 
sill (theoretical sample variance), leveling off the curve, for a 
distance called range, or keep on increasing continuosly with 
distance. The non-nugget part of the variogram measures the 
nonrandom part of the phenomenon and models its average 
medium-scale behaviour in space. 
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When a experimental variogram is defined, i.e. some points 
of a variogram plot are determined by calculating variogram at 
different lags, a model (theorical variogram) should be fitted 
to the points [18], [19], [30]. Although there are some 
statistical techniques to justify the choice of a theoretical 
variogram [31], subjective criteria and previous experiences 
are the main tools to choose one. The fitted model provides 
information about the spatial structure as well as the input 
paramenters for the last phase, kriging interpolation [18], [30]. 

3º) Predictions. The main objective of a geostatistical study 
is to get estimates of values of the studied variable at 
unsampled locations, considering the spatial distribution 
pattern and integrating information from sample points and 
observed or known trends, if they exist. Geostatistics offers a 
great variety of methods that provide estimates for unsampled 
locations. These methods are known as kriging, in honor of 
Danie Krige, who first formulated this form of interpolation in 
1951. Kriging is regarded as the best linear unbiased estimator 
(BLUE), which is a process of a theoretical weighted moving 
average: 

∑
=

λ=
n

1i
ii0 )x(Z)x(Ẑ

                                 (2) 
where )x(Ẑ 0 is the value to be estimated at the location x0, 
Z(xi) is the known value at the sampling place xi, n is the 
number of the closest samples used for estimation, and the 
weights for sample values, λi, are calculated based on the 
parameters of the variogram model. The sum of all weights 
must be one due to the necessity for ensuring that estimates 
are unbiased. 

Together with the estimated value, another output of 
kriging can be obtained for each location: the kriging 
variance, or its square root, the kriging standard deviation 
(KSD). This statistical measure indicates the reliability of 
estimates (it is an additional advantage of kriging over other 
interpolation techniques, as it was previously stated). KSD 
depends on the sample distribution and variogram structure. 

All different types of kriging are distinguished depending 
on the chosen model for the trend of the random function. In 
this work, the geostatistical interpolation method known as 
ordinary kriging was used [18], [19]. This procedure considers 
that the mean fluctuates locally; thus, stationarity is limited to 
local areas. Deutsch and Journel [32] described ordinary 
kriging as the anchor algorithm of geostatistics because of its 
robustness under different conditions. Point ordinary kriging 
is defined when estimates are related to a point. 

The geostatistical analysis, including all 3 phases 
previously described, was carried out with the extension 
Geostatistical Analyst® of the GIS software ArcGIS® 
(version 9.2). 

Before producing the final maps, cross validations were 
used to validate the accuracy of all interpolations [18], [19], 
[29], [30]. Cross validation withholds one observation at a 
time, estimating the value at that location with the remaining 
data. Later, for all data points, the difference between the 
actual and the estimated value is calculated. Finally, some 

statistics are computed to examine how well the model 
predicts the values at unknown locations. In this work, the 
mean prediction error, MPE, the mean standardized prediction 
error, MSPE, the root-mean-square prediction error, RMSPE, 
the average kriging standard error, AKSE, and the root-mean-
square standardized prediction error, RMSSPE, were used 
[29]. These are defined as: 

 

[ ]∑
=

−=
n

1i
ii )x(Z)x(Ẑ

n
1MPE

                         (3) 

[ ] )x(ˆ/)x(Z)x(Ẑ
n
1MSPE i

n

1i
ii σ−= ∑

=                  (4) 
 

[ ]
2n

1i
ii )x(Z)x(Ẑ

n
1RMSPE ∑

=

−=
                   (5) 

 

∑
=

σ=
n

1i
i

2 )x(ˆ
n
1AKSE

                               (6) 
 

( )[ ]
2n

1i
iii )x(ˆ/)x(Z)x(Ẑ

n
1RMSSPE ∑

=

σ−=
                (7) 

 
where )x(ˆ i

2σ  is the kriging variance for location xi [18], [19], 
[29], [30]. 

If the predictions are unbiased, the ME should be near zero. 
However, this statistic has some important drawbacks: it 
depends on the scale of the data and is insensitive to 
inaccuracies in the variogram. So, usually the MSPE is used to 
standardize the ME, being ideally zero, i.e., an accurate model 
would have a MSPE close to zero. The RMSPE should be as 
small as possible, denoting how closely the model predicts the 
measurement values. Besides making predictions, each of the 
kriging techniques gives the kriging variances which estimate 
the variability of the predictions from the known values. The 
kriging variances must be accurately calculated because they 
have an important influence on some applications of kriging, 
e.g., the probability kriging. If the RMSPE is close to the 
AKSE, the prediction errors are correctly assessed. If the 
RMSPE is smaller than the AKSE, then the variability of the 
predictions is overestimated; conversely, if the RMSPE is 
greater than the AKSE, then the variability of the predictions 
is underestimated. The same could be deduced from the 
RMSSPE statistic. It should be close to one. If the RMSSPE is 
greater than one, the variability of the predictions is 
underestimated; likewise if it is less than one, the variability is 
overestimated [29]. 

After conducting the cross validation process, maps of 
kriged estimates were generated which provided a visual 
representation of the distribution of the maximum ground-
level ozone in Badajoz. These maps were produced with the 
ArcMap® module of the ArcGIS®. 
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III.  RESULTS AND DISCUSSION 

A. Exploratory Analysis of Data 
 

TABLE I 
STATISTICS OF THE GROUND-LEVEL OZONE MEASUREMENTS MADE IN 138 

POINTS OF THE CITY AND 14 SAMPLING CAMPAIGNS (SD = STANDARD 
DEVIATION) 

 May 
07 

June 
07 

July 
07 

August 
07 

August -2 
07 

Sept 
07 

Oct 
07 

Mean 
(ppbV) 

33.13 36.21 33.21 39.73 36.41 29.41 25.9
4 

Median 
(ppbV) 

33.10 36.70 33.10 39.00 37.00 29.10 25.7
0 

SD (ppbV) 4.25 4.32 3.30 2.57 2.93 3.86 3.65 

Minimum 
(ppbV) 

25.9 26.3 25.3 35.0 27.0 20.9 18.9 

Maximum 
(ppbV) 

43.2 45.7 40.7 47.0 42.0 38.0 33.4 

Skewness 0.03 -0.41 -0.04 0.63 -0.67 0.25 -0.07 

Kurtosis 2.02 2.62 2.65 3.21 3.39 2.23 1.99 

        

 Nov 
07 

Dec  
07 

Jan 
08 

Feb  
08 

March   
08 

April 
08 

May 
08 

Mean 
(ppbV) 

21.39 18.97 20.61 30.18 31.89 35.54 36.7 

Median 
(ppbV) 

21.40 19.15 20.35 30.00 32.00 35.40 37.0
0 

SD (ppbV) 1.90 2.08 1.54 1.08 1.43 1.52 1.79 

Minimum 
(ppbV) 

17.5 15.1 16.8 27.0 28.0 32.0 32.0 

Maximum 
(ppbV) 

24.7 22.5 24.7 32.0 35.0 39.2 41.0 

Skewness -0.22 -0.23 0.21 -0.42 -0.46 0.01 -0.29 

Kurtosis 2.01 1.91 2.67 3.14 2.56 2.33 2.75 

 
During the first phase of the study, data distribution was 

described using classical descriptive statistics (Table I). For 
each sampling campaign, the mean and median are very 
similar which is indicative of data coming from a normal 
distribution. This is ratified by the fact that skewness values 
near zero are obtained. The skewness value is based on the 
size of the tails of a distribution and provides a measure of 
how likely the distribution will produce outliers. Thus, in this 
work, outliers should be scarce, if they exist, which is 
important to obtain accurate estimates. 

Histograms and normal QQplots for each sampling 
campaign also indicate normality. The shape of the histograms 
looks bell shaped and the points of these plots are located 
close the 45º line [29]. Fig. 6 contains the histograms and 
QQplots for two sampling campaigns, which are similar for all 

others. 
 

 
 

Fig. 6 Histograms and normal QQplots for data, ground-level ozone 
(ppbV), corresponding to two sampling campaigns 

 
Although normality is not a prerequisite for kriging, it is a 

desirable property. Kriging will only generate the best 
absolute estimate if the random function fits a normal 
distribution. 

Fig. 7 shows the temporal evolution of the mean ozone 
level for each sampling campaign. The typical annual cycle, 
with a distinct maximum in late spring-summer, is apparent. 

 

 
 

Fig. 7 Temporal evolution of the mean ground-level ozone measured 
during each sampling campaign 

B. Structural Analysis of Data 
Experimental variograms were determined assuming 

isotropy conditions because there were no reasons to justify 
the consideration of anisotropy and, what is more important, 
with 138 sample points, the influence of different directions in 
space had supposed the impossibility to define acceptable 
directional variograms [18], [19]. Therefore, spatial 
correlation does not depend on directions and experimental 
variograms were calculated with a directional tolerance of 
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360º (omnidirectional). 
When the experimental variogram was calculated, a 

theoretical variogram was fitted to their points. It is known 
how the choice of a particular variogram model implies a 
belief in a certain kind of spatial variability. Possibly, a 
variable like ground–level ozone is not evenly distributed in 
reduced distances. In these cases, exponential and spherical 
models are the most suitable [19]; the spherical ones were 
finally chosen. 

 
TABLE II 

THEORETICAL SPHERICAL VARIOGRAMS FITTED TO EXPERIMENTAL 
OMNIDIRECTIONAL VARIOGRAMS FOR ALL SAMPLING CAMPAIGNS 

 Range (m)  Nugget Sill Nugget/Sill (%) 

May 07 473 10,53 19,33 54,47 

June 07 302 4,55 13,86 32,83 

July 07 594 2,81 8,94 31,43 

August 07 617 2,09 6,74 31,01 

August-2 07 690 3,83 7,74 49,48 

Sept. 07 534 7,24 14,03 51,60 

Oct 07 790 9,06 12,79 70,84 

Nov. 07 601 1,32 3,4 38,82 

Dec. 07 509 1,48 4,46 33,18 

Jan. 08 406 0,81 2,38 34,03 

Feb. 08 412 0,48 1,19 40,34 

March 08 447 0,61 2 30,50 

April 08 512 0,3 1,61 18,63 

May 08 486 0,42 2,45 17,14 

 
In the present study, variograms showed a considerable 

nugget effect (Table II, Fig. 8), which indicates that ground 
ozone level variability can occur at a scale smaller than the 
minimum lag distance (around 75 m). All characteristics of the 
variograms for each sampling campaign are shown in Table II. 
The maximum distance of spatial dependence, the range, 
varies between 302 m for June, 2007, and 790 m for May and 
October, 2007. This means, for example if June is considered, 
that sample points 302 m or more distant from each other, are 
spatially independent. This information could be also taken 
into account for future studies on the same topic, if an optimal 
sampling design is desired. Furthermore, the fact that the 
nugget-sill ratio is moderately high, between 17 and 71% 
(Table II), and a mean value around 37 %, indicates a 
moderate-strong spatial dependence between data, because the 

part of the variance due to the nugget effect is not very 
important, as well as the necessity for considering some close 
samples to properly calculate the nugget effect. 
 

 
 

Fig. 8 Omnidirectional experimental variograms (points) and 
theoretical spherical variograms (lines) for data corresponding to the 

indicated sampling campaigns 
 
As Diem [27] indicates, the operational scale is represented 

by the range of the variogram. Thus, in this study we obtained 
operational scales ranging from 302 m to 790 m (values of all 
ranges), depending on the month, with a mean value of 517 
m., that is, small-scale geographic variations within these 
mean values dominates the ground-level ozone surfaces. This 
information is only available if a dense network of sampling 
points is considered to enable the construction of stable 
variograms, which is only possible when samples are at 
different distances, including some closer locations to better 
estimate the nugget effect. 

Other previous studies, e.g. [23], [27], have reported 
operational scales values around 5 km, always considering 
wide sampling intervals. It seems that a finer operational scale 
exists and, in any case, the spatial complexity depends on 
local sources of ozone precursors, especially nitrogen oxides, 
and the urban configuration, which can generate urban canyon 
effects. 

C. Geostatistical Estimation. Spatial Distribution Maps 
and Hazard Assessment of Ozone 

Estimated noise levels at unsampled locations were carried 
out with the ordinary point kriging method, integrating the 
spatial correlation structures described with the variograms. 

It is known that the success of kriging depends mainly on 
the estimation and modeling of the variogram. Strong spatial 
correlation, i.e., low semivariances at small spatial lags and 
the existence of a range (operational scale) are necessary to 
perform geostatistical estimates. Only spatial lags showing 
spatial dependence should be taken into account for kriging; 
in consequence, the appropriate search radius to be used 
(neighbourhood) is the operational scale value. 

A grid, constituted of 80 m side square cells, was designed 
and superimposed on the city, and estimates were conducted 
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at center of the cells, i.e., ozone concentrations were estimated 
at a spatial resolution of 80 m throughout Badajoz. The 
number of observations (neighbours) that were used to 
estimate the value at each location is at least the closer 15 
sample points. From the estimated values, the distribution of 
ozone levels in the city of Badajoz can be mapped. Previously, 
the accuracy of estimates and the validity of the prediction 
errors, the uncertainty, were assessed by means of cross 
validations (Table III). Thus: 

1) the MPE y MSPE are very low and they suggest that 
predictions are quite unbiased. 

2) For all sampling campaigns the RMSPE are less than the 
AKSE; this indicates that the variability of the predictions are 
overestimated, i.e., the predictions are, at least, as reliable as 
the value of the kriging variance indicates. The RMSSPE also 
suggest the same since they are less than one. 

3) In general, the kriging variances are fair indicators of the 
variability in the predictions for all cases because the 
differences between RMSPE and AKSE are very small. 

Fig. 9 shows some kriged ground-level ozone maps. Areas 
with higher ozone levels are usually those where traffic flow 
is more intense (near the main avenues, crossroads and access 
to the bridges). 

The highest concentrations of ozone have not to be found in 
those urban areas where the pollutants that form ozone are 
emitted. In Badajoz city, where industrial activity is not 
excessively important, traffic is the main source of ozone 
precursors, so it is expected that nitrogen oxides and VOC are 
more abundant in areas in which traffic flow is more intense. 
But if there is an abundance of nitrogen oxide, ozone 
formation is suppressed. In consequence, ozone concentration 
is sometimes low in those areas. This is not the case in 
Badajoz, as it was previously stated. Maybe the fact that the 
avenues which support more traffic are wide, allowing the 
movement of precursors, prevents nitrogen oxide 
accumulating excessively. 

Although spatial variability seems to be more important 
during spring-summer, when ozone levels are higher, it is also 
evident during autumn-winter, with lower ground-level ozone, 
and always around the main roads. 

KSD can be mapped similarly to estimates, giving an idea 
of the quality of the estimates at different places. However, 
according to Webster and Oliver [30], these maps should be 
used with caution because the reliability of kriging depends on 
how accurately the variation is represented by the chosen 
spatial model. Thus, if the nugget effect is overestimated, our 
estimates could be more reliable than they appear. In this 
work, the nugget effect was high (Table II), so we can 
consider that predictions are, at least, as reliable as the value 
of the KSD indicates. Cross validation statistics also confirm 
the reliability of estimates as previously was discussed. KSD 
maps are similar for all sampling campaigns because the 
sample locations are always the same and the variogram 
structures are alike. Fig. 10 shows, for instance, the KSD map 
for the sampling campaign of August 2007 to illustrate that 
the periphery of the town, where samples are sparse, has more 

doubtful estimates. In general, areas with many sample points 
or areas where data were sparse but evenly distributed had the 
most reliable estimates. 

 
TABLE III 

CROSS VALIDATION STATISTICS FOR THE ESTIMATES FOR ALL SAMPLING 
CAMPAIGNS USING THE ORDINARY KRIGING APPROACH (MPE = MEAN 

PREDICTION ERROR; MSPE = MEAN STANDARDIZED PREDICTION ERROR; 
RMSPE = ROOT-MEAN-SQUARE PREDICTION ERROR; AKSE = AVERAGE 

KRIGING STANDARD ERROR; RMSSPE = ROOT-MEAN-SQUARE 
STANDARDIZED PREDICTION ERROR) 

 MPE MSPE RMSPE AKSE RMSSPE 

May 07 0.056 0.012 4.24 4.33 0.98 

June 07 -0.069 -0.016 3.69 3.74 0.99 

July 07 0.015 0.005 2.61 2.64 0.99 

August 07 0.064 0.019 2.14 2.27 0.96 

August-2 07 0.058 0.021 2.40 2.55 0.95 

Sept. 07 0.005 0.003 3.48 3.61 0.97 

Oct 07 -0.009 -0.001 3.41 3.47 0.98 

Nov. 07 0.030 0.014 1.56 1.67 0.94 

Dec. 07 0.029 0.012 1.80 1.95 0.93 

Jan. 08 0.019 0.009 1.43 1.49 0.96 

Feb. 08 0.019 0.016 1.04 1.07 0.97 

March 08 0.015 0.008 1.26 1.33 0.96 

April 08 0.035 0.022 1.04 1.11 0.95 

May 08 0.034 0.018 1.34 1.39 0.97 

 
Another interesting application of geostatistics related to 

ground-level ozone studies is the generation of probability 
maps [19], which are based on the combination of kriging 
map and KSD map. For example, if ozone levels higher than 
42 ppbV are not considered optimum, according to the 
regional directive, areas which are likely to surpass that 
threshold can be delimited. Thus, Fig. 11 shows the 
probability map corresponding to the August 2007 sampling 
campaign, in which areas with high risk of ground-level ozone 
exceeding the proposed limit are represented, with the 
probabilities providing a measurement of confidence for 
hazard assessment of ozone concentration. Areas with low 
probabilities, for example <25%, could be regarded as “clean” 
zones where the ozone level is unlikely to be higher than 42 
ppbV and, on the other hand, areas with high probabilities, for 
example >50%, could be regarded as “dangerous” zones 
where the noise level is very likely to be higher than 42 ppbV. 
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Fig. 9 Spatial distribution of ground-level ozone in Badajoz city for the indicated sampling campaigns (see corresponding variograms for each 

case in Fig. 8) 
 
 

IV.  CONCLUSION 
The ground-level ozone in an urban environment must be 

studied by means of high-resolution ozone maps, which are 
essential tools to properly diagnose and propose control 
measures with the aim of minimizing its effects. In this work, 
geostatistical techniques are considered to model the ambient 
air ozone distribution over the experimental area. For this 
task, field measurements have to be sufficient to characterize 
the small-scale variability. This is only possible if a portable 
analyzer is used and measurements are taken during the daily 
time span where maximum ground-level ozone concentrations 
are expected (in this case, between 1 p.m. and 8 p.m.). 

In this work, spatial correlation is properly characterized 
using omnidirectional spherical variograms, revealing that 
spatial dependence between data has a mean value around 500 
m, considering all months, and important variations at close 
locations. Since a strong spatial dependence between ozone 
data is observed, the geostatistical algorithms, particularly the 
ordinary kriging, provide accurate estimates, as cross 
validation confirmed. 

Later, kriged estimates and their associated kriging standard 

deviations are incorporated in a GIS to generate ozone and 
uncertainty maps, which inform about the reliability in 
predictions. 

As predictions errors are fair indicators of the variability in 
predictions, as cross validation revealed, and normality is 
apparent, probability maps were finally generated. They are 
very useful tools for hazard assessment and decision support. 

Although the real spatial complexity of ozone surfaces can 
not be captured, the proposed techniques provide some 
reliable surfaces at enough spatial resolution to correctly 
visualize the spatial patterns of this pollutant. 

Polluted areas in the city have to be delimited. Future 
actions against ozone should be particularly aimed at reducing 
the high levels in these zones. Consequently, the ozone maps 
can influence decisions concerning air-quality policy, which, 
in turn, affect the attitudes and behaviors of the general public. 
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Fig. 10 Map of reliable (kriging standard deviation below 2.5 ppbV, 
light area) and unreliable (kriging standard deviation above 2.5 

ppbV, dark area) estimates of ground-level ozone in Badajoz city. 
Circles represent sample points distribution 

 

 
 

Fig. 11 Probability map of ground-level ozone higher than 42 ppbV 
in Badajoz city, for the August 2007 sampling campaign 
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