%0 Journal Article
	%A F. J. Moral García and  P. Valiente González and  F. López Rodríguez
	%D 2010
	%J International Journal of Civil and Architectural Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 37, 2010
	%T Geostatistical Analysis and Mapping of Groundlevel Ozone in a Medium Sized Urban Area
	%U https://publications.waset.org/pdf/9050
	%V 37
	%X Ground-level tropospheric ozone is one of the air
pollutants of most concern. It is mainly produced by photochemical
processes involving nitrogen oxides and volatile organic compounds
in the lower parts of the atmosphere. Ozone levels become
particularly high in regions close to high ozone precursor emissions
and during summer, when stagnant meteorological conditions with
high insolation and high temperatures are common.
In this work, some results of a study about urban ozone
distribution patterns in the city of Badajoz, which is the largest and
most industrialized city in Extremadura region (southwest Spain) are
shown. Fourteen sampling campaigns, at least one per month, were
carried out to measure ambient air ozone concentrations, during
periods that were selected according to favourable conditions to
ozone production, using an automatic portable analyzer.
Later, to evaluate the ozone distribution at the city, the measured
ozone data were analyzed using geostatistical techniques. Thus, first,
during the exploratory analysis of data, it was revealed that they were
distributed normally, which is a desirable property for the subsequent
stages of the geostatistical study. Secondly, during the structural
analysis of data, theoretical spherical models provided the best fit for
all monthly experimental variograms. The parameters of these
variograms (sill, range and nugget) revealed that the maximum
distance of spatial dependence is between 302-790 m and the
variable, air ozone concentration, is not evenly distributed in reduced
distances. Finally, predictive ozone maps were derived for all points
of the experimental study area, by use of geostatistical algorithms
(kriging). High prediction accuracy was obtained in all cases as
cross-validation showed. Useful information for hazard assessment
was also provided when probability maps, based on kriging
interpolation and kriging standard deviation, were produced.
	%P 46 - 57