Search results for: material flow analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11498

Search results for: material flow analysis

9578 OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction

Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue

Abstract:

OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.

Keywords: Open multimodal emotion corpus, annotated labels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
9577 OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction

Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue

Abstract:

OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.

Keywords: Open multimodal emotion corpus, annotated labels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
9576 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
9575 Leaching Characteristics of Upgraded Copper Flotation Tailings

Authors: Mercy M. Ramakokovhu, Henry Kasaini, Richard K.K. Mbaya

Abstract:

The copper flotation tailings from Konkola Copper mine in Nchanga, Zambia were used in the study. The purpose of this study was to determine the leaching characteristics of the tailings material prior and after the physical beneficiation process is employed. The Knelson gravity concentrator (KC-MD3) was used for the beneficiation process. The copper leaching efficiencies and impurity co-extraction percentages in both the upgraded and the raw feed material were determined at different pH levels and temperature. It was observed that the copper extraction increased with an increase in temperature and a decrease in pH levels. In comparison to the raw feed sample, the upgraded sample reported a maximum copper extraction of 69% which was 9%, higher than raw feed % extractions. The impurity carry over was reduced from 18% to 4 % on the upgraded sample. The reduction in impurity co-extraction was as a result of the removal of the reactive gangue elements during the upgrading process, this minimized the number of side reaction occurring during leaching.

Keywords: Atmospheric leaching, Copper, Iron, Knelson concentrator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
9574 Numerical Simulation of CNT Incorporated Cement

Authors: B. S. Sindu, Saptarshi Sasmal, Smitha Gopinath

Abstract:

Cement, the most widely used construction material is very brittle and characterized by low tensile strength and strain capacity. Macro to nano fibers are added to cement to provide tensile strength and ductility to it. Carbon Nanotube (CNT), one of the nanofibers, has proven to be a promising reinforcing material in the cement composites because of its outstanding mechanical properties and its ability to close cracks at the nano level. The experimental investigations for CNT reinforced cement is costly, time consuming and involves huge number of trials. Mathematical modeling of CNT reinforced cement can be done effectively and efficiently to arrive at the mechanical properties and to reduce the number of trials in the experiments. Hence, an attempt is made to numerically study the effective mechanical properties of CNT reinforced cement numerically using Representative Volume Element (RVE) method. The enhancement in its mechanical properties for different percentage of CNTs is studied in detail.

Keywords: Carbon Nanotubes, Cement composites, Representative Volume Element, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
9573 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
9572 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Steady-state, transient, natural convection, Rayleigh number, Nusselt number, Fourier Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
9571 Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality

Authors: Rifah Ediati, Jajang

Abstract:

The quality of Ribbed Smoked Sheets (RSS) primarily based on color, dryness, and the presence or absence of fungus and bubbles. This quality is strongly influenced by the drying and fumigation process namely smoking process. Smoking that is held in high temperature long time will result scorched dark brown sheets, whereas if the temperature is too low or slow drying rate would resulted in less mature sheets and growth of fungus. Therefore need to find the time and temperature for optimum quality of sheets. Enhance, unmonitored heat and mass transfer during smoking process lead to high losses of energy balance. This research aims to generate simple empirical mathematical model describing the effect of smoking time and temperature to RSS quality of color, water content, fungus and bubbles. The second goal of study was to analyze energy balance during smoking process. Experimental study was conducted by measuring temperature, residence time and quality parameters of 16 sheets sample in smoking rooms. Data for energy consumption balance such as mass of fuel wood, mass of sheets being smoked, construction temperature, ambient temperature and relative humidity were taken directly along the smoking process. It was found that mathematical model correlating smoking temperature and time with color is Color = -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1 +3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 + 0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3 + 0.00061 t4 with R square of 49.9%. Smoking room energy analysis found useful energy was 27.8%. The energy stored in the material construction 7.3%. Lost of energy in conversion of wood combustion, ventilation and others were 16.6%. The energy flowed out through the contact of material construction with the ambient air was found to be the highest contribution to energy losses, it reached 48.3%.

Keywords: RSS quality, temperature, time, smoking room, energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2730
9570 Experimental Study and Analysis of Parabolic trough Collector with Various Reflectors

Authors: Avadhesh Yadav, Manoj Kumar, Balram

Abstract:

A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed For Aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than Aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using Aluminum sheet as reflector compared to Aluminum foil as reflector is 18.98% more.

Keywords: Parabolic trough collector, Reflectors, Air flow rates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4965
9569 Experimental Study on Smart Anchor Head

Authors: Young-Jun You, Ki-Tae Park, Kyu-Wan Lee

Abstract:

Since prestressed concrete members rely on the tensile strength of the prestressing strands to resist loads, loss of even few them could result catastrophic. Therefore, it is important to measure present residual prestress force. Although there are some techniques for obtaining present prestress force, some problems still remain. One method is to install load cell in front of anchor head but this may increase cost. Load cell is a transducer using the elastic material property. Anchor head is also an elastic material and this might result in monitoring monitor present prestress force. Features of fiber optic sensor such as small size, great sensitivity, high durability can assign sensing function to anchor head. This paper presents the concept of smart anchor head which acts as load cell and experiment for the applicability of it. Test results showed the smart anchor head worked good and strong linear relationship between load and response.

Keywords: SHM, prestress force, anchor head, fiber optic sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
9568 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid

Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri

Abstract:

In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.

Keywords: Platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
9567 A Numerical Study of Single-phase Forced Convective Heat Transfer in Tube in Tube Heat Exchangers

Authors: P. Mohajeri Khameneh, I. Mirzaie, N. Pourmahmoud, M. Rahimi, S. Majidyfar

Abstract:

Three dimensional simulations in tube in tube heat exchangers are investigated numerically in this study. In these simulations forced convective heat transfer and laminar flow of single-phase water are considered. In order to measure heat transfer parameters in these heat exchangers, FLUENT CFD Solver is used in this numerical method. For the purpose of creating geometry and exert boundary and initial conditions in the present model, finite volume method in Computational Fluid Dynamics is used in this study. In the present study, at each Z-location, variation of local temperatures, heat flux and Nusselt number at the whole tube is investigated in detail. Thereafter, averaged computational Nusselt number in this model is calculated. In addition, conceivable pressure drops have been obtained at each Z-location in this model. Then, pressure drop values in the present model are explored. Finally, all the numerical results for this kind of heat exchanger will be discussed precisely.

Keywords: Heat exchanger, Laminar flow, CFD, Nusseltnumber, Tube in tube, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
9566 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
9565 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: Efficient building, electric and gas consumption, eQuest, passive parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
9564 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
9563 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
9562 A Research about Determination of the Quality of Feed Oils Used as Mixed Feed Raw Material from Some Feed Factories in Konya-Turkey

Authors: Gülşah Kanbur, Veysel Ayhan

Abstract:

Feed oil samples which are used as mixed feed raw material were taken from six different feed factories in March, May and July. All factories make production in Konya, Turkey and all of the samples were crude soybean oils. Physical and chemical analyses, free radical scavenger effect, and total phenol content were determined on these oil samples. Moisture (M) content was found between 0.10-22.23%, saponification number (SF) was determined 143.13 to 167.93 KOH/kg, free fatty acidity (FFA) was varied 0.73 to 35.00%, peroxide value (PV) was found between 1.53 and 28.43 meq/kg, unsaponifiable matter (USM) was determined from 0.40 to 17.10%, viscosity (V) was found between 34.30 and 625.67 mPas, sediment (S) amount was determined between 0.60-18.16%, free radical scavenger effect (FRSE) was varied 20.7 to 43.04% inhibition of the extract and total phenol (TPC) content was found between 1.20 and 2.69mg/L extract. Different results were found between months and factories.

Keywords: Crude soybean oil, Feed oils, mixed feed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
9561 Torsional Statics of Circular Nanostructures: Numerical Approach

Authors: M.Z. Islam, C.W. Lim

Abstract:

Based on the standard finite element method, a new finite element method which is known as nonlocal finite element method (NL-FEM) is numerically implemented in this article to study the nonlocal effects for solving 1D nonlocal elastic problem. An Eringen-type nonlocal elastic model is considered. In this model, the constitutive stress-strain law is expressed interms of integral equation which governs the nonlocal material behavior. The new NL-FEM is adopted in such a way that the postulated nonlocal elastic behavior of material is captured by a finite element endowed with a set of (cross-stiffness) element itself by the other elements in mesh. An example with their analytical solutions and the relevant numerical findings for various load and boundary conditions are presented and discussed in details. It is observed from the numerical solutions that the torsional deformation angle decreases with increasing nonlocal nanoscale parameter. It is also noted that the analytical solution fails to capture the nonlocal effect in some cases where numerical solutions handle those situation effectively which prove the reliability and effectiveness of numerical techniques.

Keywords: NL-FEM, nonlocal elasticity, nanoscale, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
9560 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
9559 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, N. Tugrul, S. Piskin

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be used as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame retardant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2·(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2·(OH)6 : H3BO3). After the zinc borate synthesis, the products were analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: Borate, ultrasonic method, zinc borate, zinc borate synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
9558 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
9557 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
9556 Development and Validation of Cylindrical Linear Oscillating Generator

Authors: Sungin Jeong

Abstract:

This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.

Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
9555 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method

Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi

Abstract:

The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.

Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
9554 CFD Modeling of High Temperature Seal Chamber

Authors: Mikhail P. Strongin, Ragupathi Soundararajan

Abstract:

The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.

Keywords: CFD, heat transfer, seal chamber, high temperature water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
9553 Modeling and Analysis of a Cruise Control System

Authors: Anthony Spiteri Staines

Abstract:

This paper examines the modeling and analysis of a cruise control system using a Petri net based approach, task graphs, invariant analysis and behavioral properties. It shows how the structures used can be verified and optimized.

Keywords: Software Engineering, Real Time Analysis andDesign, Petri Nets, Task Graphs, Parallelism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
9552 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper

Authors: A. Ouargui, N. Belouaggadia, M. Ezzine

Abstract:

In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.

Keywords: Building, composite material, insulation, thermal conductivity, paper residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
9551 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: Supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings (FW-H) equations, nozzle size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589
9550 Evaluation of Natural Drainage Flow Pattern, Necessary for Flood Control, Using Digitized Topographic Information: A Case Study of Bayelsa State Nigeria

Authors: Collins C. Chiemeke

Abstract:

The need to evaluate and understand the natural drainage pattern in a flood prone, and fast developing environment is of paramount importance. This information will go a long way to help the town planners to determine the drainage pattern, road networks and areas where prominent structures are to be located. This research work was carried out with the aim of studying the Bayelsa landscape topography using digitized topographic information, and to model the natural drainage flow pattern that will aid the understanding and constructions of workable drainages. To achieve this, digitize information of elevation and coordinate points were extracted from a global imagery map. The extracted information was modeled into 3D surfaces. The result revealed that the average elevation for Bayelsa State is 12 m above sea level. The highest elevation is 28 m, and the lowest elevation 0 m, along the coastline. In Yenagoa the capital city of Bayelsa were a detail survey was carried out showed that average elevation is 15 m, the highest elevation is 25 m and lowest is 3 m above the mean sea level. The regional elevation in Bayelsa, showed a gradation decrease from the North Eastern zone to the South Western Zone. Yenagoa showed an observed elevation lineament, were low depression is flanked by high elevation that runs from the North East to the South west. Hence, future drainages in Yenagoa should be directed from the high elevation, from South East toward the North West and from the North West toward South East, to the point of convergence which is at the center that flows from South East toward the North West. Bayelsa when considered on a regional Scale, the flow pattern is from the North East to the South West, and also North South. It is recommended that in the event of any large drainage construction at municipal scale, it should be directed from North East to the South West or from North to South. Secondly, detail survey should be carried out to ascertain the local topography and the drainage pattern before the design and construction of any drainage system in any part of Bayelsa.

Keywords: Bayelsa, Digitized Topographic Information, Drainage, Flood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234
9549 Effect of Heat Treatment on the Phase Formation of La0.6Sr0.4CoO3-α

Authors: A. A. Samat, N. A. Abdullah, M. A. M. Ishak, N. Osman

Abstract:

Powder of La0.6Sr0.4CoO3-α (LSCO) was synthesized by a combined citrate-EDTA method. The as-synthesized LSCO powder was calcined, respectively at temperatures of 800, 900 and 1000 °C with different heating/cooling rates which are 2, 5, 10 and 15 °C min-1. The effects of heat treatments on the phase formation of perovskite phase of LSCO were investigated by powder X-ray diffraction (XRD). The XRD patterns revealed that the rate of 5 °C min-1 is the optimum heating/cooling rate to obtain a single perovskite phase of LSCO with calcination temperature of 800 °C. This result was confirmed by a thermogravimetric analysis (TGA) as it showed a complete decomposition of intermediate compounds to form oxide material was also observed at 800 °C.

Keywords: La0.6Sr0.4CoO3-α, heat treatment, perovskite-type oxide, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4380