Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30101
Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda


This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: Adsorption, mathematical modeling, nanocarbons, numerical analysis.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493


[1] J. T. Duda, J. Milewska-Duda, M. Kwiatkowski, M. Ziółkowska, “A geometrical model of random porous structures to adsorption calculations”, Adsorption, vol. 19, pp. 545-555, Feb. 2013.
[2] H.-M. Cheng, Q.-H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”, Carbon, vol. 39, pp. 1447-1454, Aug. 2001.
[3] Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J. E. Fischer, “Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage”, J. Am. Chem. Soc., vol. 127, pp. 16006-16007, Oct. 2005.
[4] X. Zhang, W. Wang, J. Chen, Z. Shen, “Characterization of a sample of single-walled carbon nanotube array by nitrogen adsorption isotherm and Density Functional Theory”, Langmuir, vol. 19, pp. 6088-6096, May 2003.
[5] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58, Nov. 1991.
[6] S. N. Naess, A. Elgsaeter, G. Helgesen, K. D. Knudsen. “Carbon nanocones: wall structure and morphology”, Sci. Technol. Adv. Mater., vol. 10, pp. 065002-065008, Dec. 2009.
[7] O. O. Adisa, B. J. Cox, J. M. Hill, “Open carbon nanocones as candidates for gas storage”, J. Phys. Chem. C, vol. 115, pp. 24528– 24533, Nov. 2011.
[8] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem., vol. 57, pp. 603-619, Apr. 1985.
[9] J. Milewska-Duda, J.T. Duda, “New BET-like models for heterogeneous adsorption in microporous adsorbents”, Appl. Surf. Sci., vol. 196, pp. 115-125, Aug. 2002.
[10] J. T. Duda, J. Milewska-Duda, „Modeling of Surface Heterogeneity of Microporous Adsorbents with LBET Approach”, Langmuir, vol. 21, pp. 7243-7256, Jun. 2005.
[11] M. M. Dubinin, “Modern state theory of gas and vapour adsorption by microporous adsorbents”, Pure Appl. Chem., vol. 10, pp. 309-322, Apr. 1965.
[12] M. M. Dubinin, “Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures”, Pure Appl. Chem., vol. 61, pp. 1841-1843, Nov. 1989.
[13] M. Ziółkowska, J. T. Duda, J. Milewska-Duda, “Adsorption mechanisms in a view of DFT and clustering-based models”, in Proc. of International Youth Science Festival: Litteris et artibus, Chemistry and Chemical Technology, Lviv, 2013, pp. 184-187.
[14] C. M. Lastoskie, K. E. Gubbins, N. Quirke, „Pore size distribution analysis of microporous carbons: a Density Functional Theory approach”, J. Phys. Chem., vol. 97, pp. 4786-479, May 1993.
[15] A. Dąbrowski, “Adsorption from theory to practice”, Adv. Colloid Interface Sci., vol. 93, pp. 135-224, Oct. 2001.
[16] J. Jagiełło, J. P. Olivier, “2D-NLDFT adsorption models for carbon slitshaped pores with surface energetical heterogeneity and geometrical corrugation”, Carbon, vol. 55, pp. 70-80, Apr. 2013.
[17] M. Kwiatkowski, M. Ziółkowska, J. Milewska-Duda, J. T. Duda, “Applicability of the universal uniBET adsorption theory to silica gel structure description”, in Proc. Science and Technology Conference “Mineral Sorbents”: Raw Materials, Energy, Environment, Modern Technologies, Cracow, 2013, pp. 269-284.
[18] M. Ziółkowska, J. T. Duda, J. Milewska-Duda, M. Kwiatkowski, “Applicability of mathematical description of adsorption measurements and adsorption mechanism in prediction of gas deposits in microporous materials”, in Proc. International Forum – Contest: Topical Issues of Rational Use of Natural Resources, Saint Petersburg, 2014, pp. 44-46.
[19] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.
[20] D. W. van Krevelen, Coal: Typology, Physics, Chemistry, Constitution. Elsevier, New York, 1993.
[21] Chemical Engineering and Materials Research Center (CHERIC), online, 26.07.2014:
[22] W. A. Steele,” The physical interaction of gases with crystalline solids I. Gas-solid energies and properties of isolated adsorbed atoms”, Surf. Sci.vol. 36, pp. 317-352, Apr. 1973.
[23] J. Milewska-Duda, Jan Duda, G. Jodłowski, M. Wójcik, „A new state equation for sorptives in near-critical and overcritical temperature regions”, Langmuir, vol. 16, pp. 6601-6612, Jul. 2000.
[24] J. Milewska-Duda, Jan Duda, „High-accuracy PVT relationship for compressed fluids and their application to BET-like modelling of CO2 and CH4 adsorption”, Adsorpt. Sci. Technol., vol. 25, pp. 543-559, 2007.
[25] M. Kaukonen, A. Gulans, P. Havu, E. Kauppinen, “Lennard-Jones Parameters for Small Diameter Carbon Nanotubes and Water for Molecular Mechanics Simulations from van der Waals Density Functional Calculations”, J. Comput. Chem., vol. 33, pp. 652–658, Jan. 2012.