Search results for: facial feature detection
478 Polyethylenimine Coated Carbon Nanotube for Detecting Rancidity in Frying Oil
Authors: Vincent Lau Chun Fai, Yang Doo Lee, Kyongsoo Lee, Keun-Soo Lee, Shin-Kyung, Byeong-Kwon Ju
Abstract:
Chemical detection is still a continuous challenge when it comes to designing single-walled carbon nanotube (SWCNT) sensors with high selectivity, especially in complex chemical environments. A perfect example of such an environment would be in thermally oxidized soybean oil. At elevated temperatures, oil oxidizes through a series of chemical reactions which results in the formation of monoacylglycerols, diacylglycerols, oxidized triacylglycerols, dimers, trimers, polymers, free fatty acids, ketones, aldehydes, alcohols, esters, and other minor products. In order to detect the rancidity of oxidized soybean oil, carbon nanotube chemiresistor sensors have been coated with polyethylenimine (PEI) to enhance the sensitivity and selectivity. PEI functionalized SWCNTs are known to have a high selectivity towards strong electron withdrawing molecules. The sensors were very responsive to different oil oxidation levels and furthermore, displayed a rapid recovery in ambient air without the need of heating or UV exposure.Keywords: Carbon nanotubes, polyethylenimine, sensor, oxidized oil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779477 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731476 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network
Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.
Keywords: artificial neural networks, aquaculture, forced circulation hot water system,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060475 An Event Based Approach to Extract the Run Time Execution Path of BPEL Process for Monitoring QoS in the Cloud
Authors: Rima Grati, Khouloud Boukadi, Hanene Ben-Abdallah
Abstract:
Due to the dynamic nature of the Cloud, continuous monitoring of QoS requirements is necessary to manage the Cloud computing environment. The process of QoS monitoring and SLA violation detection consists of: collecting low and high level information pertinent to the service, analyzing the collected information, and taking corrective actions when SLA violations are detected. In this paper, we detail the architecture and the implementation of the first step of this process. More specifically, we propose an event-based approach to obtain run time information of services developed as BPEL processes. By catching particular events (i.e., the low level information), our approach recognizes the run-time execution path of a monitored service and uses the BPEL execution patterns to compute QoS of the composite service (i.e., the high level information).
Keywords: Monitoring of Web service composition, Cloud environment, Run-time extraction of execution path of BPEL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690474 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517473 Integrating Hedgerow into Town Planning: A Framework for Sustainable Residential Development
Authors: Siqing Chen
Abstract:
The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. As landscape interfaces, hedgerows define the spaces in the landscape, give the landscape life and meaning, and enrich ecologies and cultural heritages of the American countryside. Although hedgerows were originally intended as fences and to mark property and townland boundaries, they are not merely the natural or man-made additions to the landscape--they have gradually become “naturalized" into the landscape, deeply rooted in the rural culture, and now formed an important component of the southern American rural environment. However, due to the ever expanding real estate industry and high demand for new residential development, substantial areas of authentic hedgerow landscape in the southern United States are being urbanized. Using Hudson Farm as an example, this study illustrated guidelines of how hedgerows can be integrated into town planning as green infrastructure and landscape interface to innovate and direct sustainable land use, and suggest ways in which such vernacular landscapes can be preserved and integrated into new development without losing their contextual inspiration.Keywords: Hedgerow, Town planning, Sustainable design, Ecological infrastructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673472 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.
Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925471 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.
Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997470 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection
Authors: Jinming Ma, Tianbing Xia, Janusz R. Getta
Abstract:
This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.
Keywords: Mobile internet, advertisement, anti-fraud, fuzzy set theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599469 PET/CT Patient Dosage Assay
Authors: Gulten Yilmaz, A. Beril Tugrul, Mustafa Demir, Dogan Yasar, Bayram Demir, Bulent Buyuk
Abstract:
A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.
Keywords: PET/CT, TLD, MIRD, Dose measurement, Patient doses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949468 Identification of Phenolic Contents in Malaysian Variety of Pummelo (Citrus Grandis L. Osbeck) Fruit Juice Using HPLC-DAD
Authors: N. N. A. K. Shah, R. A. Rahman, R. Shamsuddin, N. M. Adzahan
Abstract:
Pummelo is known to be the largest of all citrus fruits, with expected ratio of 2:1 (w/v) of producing juice, is an attractive opportunity for Malaysia to expand pummelo-s influence and marketability over the international market of juices. The purpose of this study is to identify and quantify the phenolic compounds in two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52). Identifications of polyphenols composition were done using High Performance Liquid Chromatography Diode Array Detection (HPLC-DAD). The phenolic compounds that were found in both varieties were hydroxycinnamic acids and flavonones. This study proved that Tambun variety has the highest antioxidant and phenolic compounds in comparison to Ledang variety. However, considerations have to be made to suit consumer-s taste bud and the amount of enzyme needed to clarify the juice for its marketability.
Keywords: Antioxidant, HPLC, phenolic contents and pummelo fruit juice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360467 DC Bus Voltage Regulator for Renewable Energy Based Microgrid Application
Authors: Bakari M. M. Mwinyiwiwa
Abstract:
Renewable Energy based microgrids are being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. The technical challenges associated with the operation and controls are immense. Electricity generation by Renewable Energy Sources is of stochastic nature such that there is a demand for regulation of voltage output in order to satisfy the standard loads’ requirements. In a renewable energy based microgrid, the energy sources give stochastically variable magnitude AC or DC voltages. AC voltage regulation of micro and mini sources pose practical challenges as well as unbearable costs. It is therefore practically and economically viable to convert the voltage outputs from stochastic AC and DC voltage sources to constant DC voltage to satisfy various DC loads including inverters which ultimately feed AC loads. This paper presents results obtained from SEPIC converter based DC bus voltage regulator as a case study for renewable energy microgrid application. Real-Time Simulation results show that upon appropriate choice of controller parameters for control of the SEPIC converter, the output DC bus voltage can be kept constant regardless of wide range of voltage variations of the source. This feature is particularly important in the situation that multiple renewable sources are to be integrated to supply a microgrid under main grid integration or isolated modes of operation.
Keywords: DC Voltage Regulator, microgrid, multisource, Renewable Energy, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4314466 Shot Transition Detection with Minimal Decoding of MPEG Video Streams
Authors: Mona A. Fouad, Fatma M. Bayoumi, Hoda M. Onsi, Mohamed G. Darwish
Abstract:
Digital libraries become more and more necessary in order to support users with powerful and easy-to-use tools for searching, browsing and retrieving media information. The starting point for these tasks is the segmentation of video content into shots. To segment MPEG video streams into shots, a fully automatic procedure to detect both abrupt and gradual transitions (dissolve and fade-groups) with minimal decoding in real time is developed in this study. Each was explored through two phases: macro-block type's analysis in B-frames, and on-demand intensity information analysis. The experimental results show remarkable performance in detecting gradual transitions of some kinds of input data and comparable results of the rest of the examined video streams. Almost all abrupt transitions could be detected with very few false positive alarms.Keywords: Adaptive threshold, abrupt transitions, gradual transitions, MPEG video streams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561465 Performance Analysis of Brain Tumor Detection Based On Image Fusion
Authors: S. Anbumozhi, P. S. Manoharan
Abstract:
Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.
Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3061464 Ontology of Collaborative Supply Chain for Quality Management
Authors: Jiaqi Yan, Sherry Sun, Huaiqing Wang, Zhongsheng Hua
Abstract:
In the highly competitive and rapidly changing global marketplace, independent organizations and enterprises often come together and form a temporary alignment of virtual enterprise in a supply chain to better provide products or service. As firms adopt the systems approach implicit in supply chain management, they must manage the quality from both internal process control and external control of supplier quality and customer requirements. How to incorporate quality management of upstream and downstream supply chain partners into their own quality management system has recently received a great deal of attention from both academic and practice. This paper investigate the collaborative feature and the entities- relationship in a supply chain, and presents an ontology of collaborative supply chain from an approach of aligning service-oriented framework with service-dominant logic. This perspective facilitates the segregation of material flow management from manufacturing capability management, which provides a foundation for the coordination and integration of the business process to measure, analyze, and continually improve the quality of products, services, and process. Further, this approach characterizes the different interests of supply chain partners, providing an innovative approach to analyze the collaborative features of supply chain. Furthermore, this ontology is the foundation to develop quality management system which internalizes the quality management in upstream and downstream supply chain partners and manages the quality in supply chain systematically.Keywords: Ontology, supply chain quality management, service-oriented architecture, service-dominant logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858463 Overview of CARDIOSENSOR Project on the Development of a Nanosensor for Assessing the Risk of Cardiovascular Disease
Authors: A.C. Duarte, C.I.L. Justino, K. Duarte, A.C. Freitas, R. Pereira, P. Chaves, P. Bettencourt, S. Cardoso, T.A.P. Rocha-Santos
Abstract:
This paper aims at overviewing the topics of a research project (CARDIOSENSOR) on the field of health sciences (biomaterials and biomedical engineering). The project has focused on the development of a nanosensor for the assessment of the risk of cardiovascular diseases by the monitoring of C-reactive protein (CRP), which has been currently considered as the best validated inflammatory biomarker associated to cardiovascular diseases. The project involves tasks such as: 1) the development of sensor devices based on field effect transistors (FET): assembly, optimization and validation; 2) application of sensors to the detection of CRP in standard solutions and comparison with enzyme-linked immunosorbent assay (ELISA); and 3) application of sensors to real samples such as blood and saliva and evaluation of their ability to predict the risk of cardiovascular disease.
Keywords: Carbon nanotubes field effect transistors, cardiovascular diseases, C-reactive protein, sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047462 A Text Mining Technique Using Association Rules Extraction
Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey
Abstract:
This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.
Keywords: Text mining, data mining, association rule mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4445461 A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering
Authors: Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar
Abstract:
This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.Keywords: Model comparison, model clone detection, model versioning, EMF Model, model diff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175460 Automatic Detection and Spatio-temporal Analysis of Commercial Accumulations Using Digital Yellow Page Data
Authors: Yuki. Akiyama, Hiroaki. Sengoku, Ryosuke. Shibasaki
Abstract:
In this study, the locations and areas of commercial accumulations were detected by using digital yellow page data. An original buffering method that can accurately create polygons of commercial accumulations is proposed in this paper.; by using this method, distribution of commercial accumulations can be easily created and monitored over a wide area. The locations, areas, and time-series changes of commercial accumulations in the South Kanto region can be monitored by integrating polygons of commercial accumulations with the time-series data of digital yellow page data. The circumstances of commercial accumulations were shown to vary according to areas, that is, highly- urbanized regions such as the city center of Tokyo and prefectural capitals, suburban areas near large cities, and suburban and rural areas.Keywords: Commercial accumulations, Spatio-temporal analysis, Urban monitoring, Yellow page data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266459 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.
Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787458 Dynamic Fast Tracing and Smoothing Technique for Geiger-Muller Dosimeter
Authors: M. Ebrahimi Shohani, S. M. Taheri, S. M. Golgoun
Abstract:
Environmental radiation dosimeter is a kind of detector that measures the dose of the radiation area. Dosimeter registers the radiation and converts it to the dose according to the calibration parameters. The limit of a dose is different at each radiation area and this limit should be notified and reported to the user and health physics department. The stochastic nature of radiation is the reason for the fluctuation of any gamma detector dosimetry. In this research we investigated Geiger-Muller type of dosimeter and tried to improve the dose measurement. Geiger-Muller dosimeter is a counter that converts registered radiation to the dose. Therefore, for better data analysis, it is necessary to apply an algorithm to smooth statistical variations of registered radiation. We proposed a method to smooth these fluctuations much more and also proposed a dynamic way to trace rapid changes of radiations. Results show that our method is fast and reliable method in comparison the traditional method.
Keywords: Geiger-Muller, radiation detection, smoothing algorithms, dosimeter, dose calculation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487457 An Evaluation of Sputum Smear Conversion and Haematological Parameter Alteration in Early Detection Period of New Pulmonary Tuberculosis (PTB) Patients
Authors: Tasnuva Tamanna, Sanjida Halim Topa
Abstract:
Sputum smear conversion after one month of antituberculosis therapy in new smear positive pulmonary tuberculosis patients (PTB+) is a vital indicator towards treatment success. The objective of this study is to determine the rate of sputum smear conversion in new PTB+ patients after one month under treatment of National Institute of Diseases of the Chest and Hospital (NIDCH). Analysis of sputum smear conversion was done by re-clinical examination with sputum smear microscopic test after one month. Socio-demographic and hematological parameters were evaluated to perceive the correlation with the disease status. Among all enrolled patients only 33.33% were available for follow up diagnosis and of them only 42.86% patients turned to smear negative. Probably this consequence is due to non-coherence to the proper disease management. 66.67% and 78.78% patients reported low haemoglobin and packed cell volume level respectively whereas 80% and 93.33% patients accounted accelerated platelet count and erythrocyte sedimentation rate correspondingly.Keywords: Followed up patients, PTB+ patients, sputum smear conversion, and sputum smear microscopic test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174456 Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System
Authors: M. O. Welcome, Y. E. Razvodovsky, E. V. Pereverzeva, V. A. Pereverzev
Abstract:
The error monitoring and processing system, EMPS is the system located in the substantia nigra of the midbrain, basal ganglia and cortex of the forebrain, and plays a leading role in error detection and correction. The main components of EMPS are the dopaminergic system and anterior cingulate cortex. Although, recent studies show that alcohol disrupts the EMPS, the ways in which alcohol affects this system are poorly understood. Based on current literature data, here we suggest a hypothesis of alcohol-related glucose-dependent system of error monitoring and processing, which holds that the disruption of the EMPS is related to the competency of glucose homeostasis regulation, which in turn may determine the dopamine level as a major component of EMPS. Alcohol may indirectly disrupt the EMPS by affecting dopamine level through disorders in blood glucose homeostasis regulation.Keywords: Alcohol related disruption, Error monitoring andprocessing system, Mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360455 Online Signature Verification Using Angular Transformation for e-Commerce Services
Authors: Peerapong Uthansakul, Monthippa Uthansakul
Abstract:
The rapid growth of e-Commerce services is significantly observed in the past decade. However, the method to verify the authenticated users still widely depends on numeric approaches. A new search on other verification methods suitable for online e-Commerce is an interesting issue. In this paper, a new online signature-verification method using angular transformation is presented. Delay shifts existing in online signatures are estimated by the estimation method relying on angle representation. In the proposed signature-verification algorithm, all components of input signature are extracted by considering the discontinuous break points on the stream of angular values. Then the estimated delay shift is captured by comparing with the selected reference signature and the error matching can be computed as a main feature used for verifying process. The threshold offsets are calculated by two types of error characteristics of the signature verification problem, False Rejection Rate (FRR) and False Acceptance Rate (FAR). The level of these two error rates depends on the decision threshold chosen whose value is such as to realize the Equal Error Rate (EER; FAR = FRR). The experimental results show that through the simple programming, employed on Internet for demonstrating e-Commerce services, the proposed method can provide 95.39% correct verifications and 7% better than DP matching based signature-verification method. In addition, the signature verification with extracting components provides more reliable results than using a whole decision making.Keywords: Online signature verification, e-Commerce services, Angular transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589454 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis
Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv
Abstract:
The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.
Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, Pareto analysis, risk priority number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659453 An Advanced Hybrid P2p Botnet 2.0
Authors: T. T. Lu, H.Y. Liao, M .F. Chen
Abstract:
Recently, malware attacks have become more serious over the Internet by e-mail, denial of service (DoS) or distributed denial of service (DDoS). The Botnets have become a significant part of the Internet malware attacks. The traditional botnets include three parts – botmaster, command and control (C&C) servers and bots. The C&C servers receive commands from botmaster and control the distributions of computers remotely. Bots use DNS to find the positions of C&C server. In this paper, we propose an advanced hybrid peer-to-peer (P2P) botnet 2.0 (AHP2P botnet 2.0) using web 2.0 technology to hide the instructions from botmaster into social sites, which are regarded as C&C servers. Servent bots are regarded as sub-C&C servers to get the instructions from social sites. The AHP2P botnet 2.0 can evaluate the performance of servent bots, reduce DNS traffics from bots to C&C servers, and achieve harder detection bots actions than IRC-based botnets over the Internet.Keywords: Peer-to-peer, Botnets, Botnet 2.0, Hybridpeer-to-peer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431452 A Novel Machining Signal Filtering Technique: Z-notch Filter
Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.
Abstract:
A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.
Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887451 Clustering Unstructured Text Documents Using Fading Function
Authors: Pallav Roxy, Durga Toshniwal
Abstract:
Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989450 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950449 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage
Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain
Abstract:
This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.
Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6069