Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System

Authors: M. O. Welcome, Y. E. Razvodovsky, E. V. Pereverzeva, V. A. Pereverzev

Abstract:

The error monitoring and processing system, EMPS is the system located in the substantia nigra of the midbrain, basal ganglia and cortex of the forebrain, and plays a leading role in error detection and correction. The main components of EMPS are the dopaminergic system and anterior cingulate cortex. Although, recent studies show that alcohol disrupts the EMPS, the ways in which alcohol affects this system are poorly understood. Based on current literature data, here we suggest a hypothesis of alcohol-related glucose-dependent system of error monitoring and processing, which holds that the disruption of the EMPS is related to the competency of glucose homeostasis regulation, which in turn may determine the dopamine level as a major component of EMPS. Alcohol may indirectly disrupt the EMPS by affecting dopamine level through disorders in blood glucose homeostasis regulation.

Keywords: Alcohol related disruption, Error monitoring andprocessing system, Mechanism.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085004

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354

References:


[1] K. R. Ridderinkhof, Y. de Vlugt, A. Bramlage, M. Spaan, M. Elton et al, "Alcohol consumption impairs detection of performance errors in mediofrontal cortex," Science, vol. 298, pp. 2209-2211, 2002.
[2] C. B. Holroyd, N. Yeung, "Alcohol and error processing," Trends. Neurosci., vol. 26, no. 8, pp. 402- 404, 2003.
[3] Y. Nick, M. M. Botvinick, J. D. Cohen, "The neural basis of error detection: Conflict monitoring and the error-related negativity," Psychol. Rev., vol. 111, no. 4, pp. 931-959, 2004.
[4] S. Nieuwenhuis, C. B. Holroyd, N. Mol, M. G. H. Coles, "Reinforcement related brain potential from medial frontal cortex: origins and functional significance," Neurosci. Behav. Rev., vol. 28, no. 4, pp. 441-448, 2004.
[5] T. F. Münte, M. Heldmann, H. Hinrichs, J. Marco-Pallares, U. M. Krämer et al., "Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings," Hum. Neurosci., vol. 1, no. 11, pp. 1-6, 2008.
[6] K. R. Ridderinkhof, S. Nieuwenhuis, T. R. Bashore, "Errors are foreshadowed in brain potentials associated with action monitoring in cingulate cortex," Neurosci. Lett., vol. 348, pp. 1-4, 2003.
[7] P. R. Montague, P. Dayan, T. J. Sejnowski, "A Framework for Mesencephalic Dopamine Systems Based on Predictive Hebbian Learning," J. Neurosci., vol. 76, no. 5, pp. 1936-1947, 1996.
[8] M. O. Welcome, E. V. Pereverzeva, V. A. Pereverzev, "Comparative analyses of the extent of glucose homeostasis control and mental activities of alcohol users and non-alcohol users," Pð¥rt Harcourt Med. J., vol. 4, no. 2, pp. 109-121, 2010.
[9] C. B. Holroyd, P. Praamstra, E. Plat, M. G.H. Coles, "Spared errorrelated potentials in mild to moderate Parkinson-s disease," Neuropsychologia, vol. 1419, pp. 1-9, 2002.
[10] O. Montefusco, M. C. Assini, C. Missale, "Insulin-mediated effects of glucose on dopamine metabolism," Acta. Diabet. Lat., vol. 21, pp. 71- 77, 1984.
[11] R. Willemssen, T. M├╝ller, M. Schwarz, M. Falkenstein, C. Beste, "Response Monitoring in De Novo Patients with Parkinson-s Disease," PLoS One, vol. 4, no. 3, e4898, 2009, doi:10.1371/journal.pone.0004898.
[12] N. T. Bello, A. Hajnal, "Alterations in blood glucose levels under hyperinsulinemia affect accumbens dopamine," Physiol. Behav., vol. 88, no. 1-2, pp. 138-145, 2006.
[13] L. T. Haltia, J. O. Rinne, H. Merisaari, R. P. Maguire, E. Savontaus et al., "Effects of intravenous glucose on dopaminergic function in the human brain in vivo," Synapse, vol. 61, no. 9, pp. 748 - 756, 2007.
[14] J. S. Lee, Z. Pfund, C. Juhász, M. E. Behen, O. Muzik et al., "Altered regional brain glucose metabolism in duchenne muscular dystrophy: a PET study," Muscle Nerve., vol. 26, no. 4, pp. 506-512, 2002.
[15] J. M. Williams, W. A. Owens, G. H. Turner, C. Saunders, C. Dipace et al., "Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine," PLoS Biol., vol. 5, no. 10, e274, 2007, doi:10.1371/journal.pbio.0050274.
[16] C. Beste, R. Willemsen, C. Saft, M. Falkenstein, "Error processing in normal aging and in basal ganglia disorders," Neuroscience, vol. 159, pp. 143-149, 2009.
[17] J. C. Umhau, S. G. Petrulis, R. Diaz, R. Rawlings, D. T. George, "Blood Glucose Is Correlated with Cerebrospinal Fluid Neurotransmitter Metabolites," Neuroendocrinology, vol. 78, pp. 339-343, 2003.
[18] N. D. Volkow, G-J. Wang, D. Franceschi, J. S. Fowler, P. K. Thanos et al., "Low doses of alcohol substantially decrease glucose metabolism in the human brain," NeuroImage, vol. 29, pp. 295 - 301, 2006.
[19] H. A. Krebs, R. A. Freedland, R. Hems, M. Stubbs, "Inhibition of hepatic gluconeogenesis by ethanol," Biochem. J., vol. 112, pp. 117-124, 1969.
[20] G. Hajcak, S. Nieuwenhuis, K. R Ridderinkhof, R. F. Simons, "Errorpreceding brain activity: Robustness, temporal dynamics, and boundary conditions," Biol. Psychol., vol. 70, pp. 67-78, 2005.
[21] S. Nieuwenhuis, Y. Nick, W. Wery van den, K. R. Ridderinkhof, "Electrophysiological correlates of anterior cingulate function in a Go/NoGo task: Effects of response conflict and trial-type frequency," Cogn. Affect. Behav. Neurosci., vol. 3, pp. 17-26, 2003.
[22] Y. Tu, S. Kroener, K. Abernathy, C. Lapish, J. Seamans et al., "Ethanol Inhibits Persistent Activity in Prefrontal Cortical Neurons," J. Neurosci., vol. 27, no. 17, pp. 4765-4775, 2007.
[23] R. Hester, N. Barre, K. Murphy, T. J. Silk, J. B. Mattingley, "Human Medial Frontal Cortex Activity Predicts Learning from Errors," Cereb. Cort., vol. 18, pp. 1933-1940, 2008.
[24] D. Burdakov, S. M. Luckman, A. Verkhratsky, "Glucose-sensing neurons of the hypothalamus," Phil. Trans. R. Soc. B., vol. 360, pp. 2227-2235, 2005.
[25] R. Z. Goldstein, D. Tomasi, S. Rajaram, L. A. Cottone, L. Zhang et al., "Role of anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction," Neuroscience, vol. 144, pp. 1153-1159, 2007.
[26] I. Hindmarch, J. S. Kerr, N. Sherwood, "The effects of alcohol and other drugs on psychomotor performance and cognitive function," Alcohol. Alcohol., vol. 26, pp. 71-79, 1991.
[27] B. E. de Galan, B. J. Schouwenberg, C. J. Tack, P. Smits, "Pathophysiology and management of recurrent hypoglycaemia and hypoglycaemia unawareness in diabetes," Neth. J. Med., vol. 64, pp. 269-279, 2006.
[28] A. Peters, U. Schweiger, L. Pellerin, C. Hubold, K. M. Oltmanns et al., "The selfish brain: competition for energy resources," Neurosci. Biobehav. Rev., vol. 28, pp. 143-180, 2004.
[29] C. S. Carter, T. S. Braver, D. M. Barch, M. M. Botvinick, D. Noll et al., "Anterior cingulate cortex, error detection, and the online monitoring of performance," Science, vol. 280, pp. 747-749, 1998.
[30] M. M. Botvinick, T. S. Braver, D. M. Barch, C. S. Carter, J. D. Cohen, "Conflict monitoring and cognitive control," Psychol. Rev., vol. 108, no. 3, pp. 624-652, 2001.
[31] M. M. Botvinick, J. D. Cohen, C. S. Carter, "Conflict monitoring and anterior cingulate cortex: an update," Trends. Cogn. Sci., vol. 8, no. 12, pp. 539-546, 2004.
[32] C. Xavier, D. Jean-Claude, "Hormonal and Genetic Influences on Processing Reward and Social Information", in Ann. N.Y. Acad. Sci., vol. 1118, pp. 43-73, 2007.
[33] J. B. Hirsh, M. Inzlicht, "Error-related negativity predicts academic performance," Psychophysiology, vol. 46, pp. 1-5, 2009.
[34] M. A.S. Boksem, M. Tops, A. E. Wester, T. F. Meijman, M. M. Lorist, "Error-related ERP components and individual differences in punishment and reward sensitivity," Brian. Res., vol. 1101, pp. 92-101, 2006.