Search results for: layout optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1995

Search results for: layout optimization

165 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source

Authors: A. Sharma, R. Tewari, S. K. Soni

Abstract:

Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.

Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
164 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
163 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
162 Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits

Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert

Abstract:

Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.

Keywords: Design of logic circuit, evolutionary computation, evolvable hardware, mutation rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
161 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
160 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
159 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
158 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
157 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
156 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells

Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser

Abstract:

Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.

Keywords: Cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069
155 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
154 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.

Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
153 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
152 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine

Authors: A. R. Binesh, S. Hossainpour

Abstract:

Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.

Keywords: Diesel engine, Combustion, Pollution, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
151 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
150 Design of Low Power and High Speed Digital IIR Filter in 45nm with Optimized CSA for Digital Signal Processing Applications

Authors: G. Ramana Murthy, C. Senthilpari, P. Velrajkumar, Lim Tien Sze

Abstract:

In this paper, a design methodology to implement low-power and high-speed 2nd order recursive digital Infinite Impulse Response (IIR) filter has been proposed. Since IIR filters suffer from a large number of constant multiplications, the proposed method replaces the constant multiplications by using addition/subtraction and shift operations. The proposed new 6T adder cell is used as the Carry-Save Adder (CSA) to implement addition/subtraction operations in the design of recursive section IIR filter to reduce the propagation delay. Furthermore, high-level algorithms designed for the optimization of the number of CSA blocks are used to reduce the complexity of the IIR filter. The DSCH3 tool is used to generate the schematic of the proposed 6T CSA based shift-adds architecture design and it is analyzed by using Microwind CAD tool to synthesize low-complexity and high-speed IIR filters. The proposed design outperforms in terms of power, propagation delay, area and throughput when compared with MUX-12T, MCIT-7T based CSA adder filter design. It is observed from the experimental results that the proposed 6T based design method can find better IIR filter designs in terms of power and delay than those obtained by using efficient general multipliers.

Keywords: CSA Full Adder, Delay unit, IIR filter, Low-Power, PDP, Parametric Analysis, Propagation Delay, Throughput, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3815
149 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyse huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic wellbeing is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that support the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: COVID-19, big data, data analysis, indexing, NoSQL, sharding, scalability, poverty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69
148 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
147 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period

Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych

Abstract:

In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.

Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
146 BeamGA Median: A Hybrid Heuristic Search Approach

Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte

Abstract:

The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.

Keywords: Median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
145 Aerodynamic Design Optimization of High-Speed Hatchback Cars for Lucrative Commercial Applications

Authors: A. Aravind, M. Vetrivel, P. Abhimanyu, C. A. Akaash Emmanuel Raj, K. Sundararaj, V. R. S. Kumar

Abstract:

The choice of high-speed, low budget hatchback car with diversified options is increasing for meeting the new generation buyers trend. This paper is aimed to augment the current speed of the hatchback cars through the aerodynamic drag reduction technique. The inverted airfoils are facilitated at the bottom of the car for generating the downward force for negating the lift while increasing the current speed range for achieving a better road performance. The numerical simulations have been carried out using a 2D steady pressure-based    k-ɛ realizable model with enhanced wall treatment. In our numerical studies, Reynolds-averaged Navier-Stokes model and its code of solution are used. The code is calibrated and validated using the exact solution of the 2D boundary layer displacement thickness at the Sanal flow choking condition for adiabatic flows. We observed through the parametric analytical studies that the inverted airfoil integrated with the bottom surface at various predesigned locations of Hatchback cars can improve its overall aerodynamic efficiency through drag reduction, which obviously decreases the fuel consumption significantly and ensure an optimum road performance lucratively with maximum permissible speed within the framework of the manufactures constraints.

Keywords: Aerodynamics of commercial cars, downward force, hatchback car, inverted airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
144 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms

Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert

Abstract:

We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.

Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4195
143 Numerical Studies on Thrust Vectoring Using Shock Induced Supersonic Secondary Jet

Authors: Jerin John, Subanesh Shyam R., Aravind Kumar T. R., Naveen N., Vignesh R., Krishna Ganesh B, Sanal Kumar V. R.

Abstract:

Numerical studies have been carried out using a validated two-dimensional RNG k-epsilon turbulence model for the design optimization of a thrust vector control system using shock induced supersonic secondary jet. Parametric analytical studies have been carried out with various secondary jets at different divergent locations, jet interaction angles, jet pressures. The results from the parametric studies of the case on hand reveal that the primary nozzle with a small divergence angle, downstream injections with a distance of 2.5 times the primary nozzle throat diameter from the primary nozzle throat location warrant higher efficiency over a certain range of jet pressures and jet angles. We observed that the supersonic secondary jet opposing the core flow with jets interaction angle of 40o to the axis far downstream of the nozzle throat facilitates better thrust vectoring than the secondary jet with same direction as that of core flow with various interaction angles. We concluded that fixing of the supersonic secondary jet nozzle pointing towards the throat direction with suitable angle at a distance 2 to 4 times of the primary nozzle throat diameter, as the case may be, from the primary nozzle throat location could facilitate better thrust vectoring for the supersonic aerospace vehicles.

Keywords: Fluidic thrust vectoring, rocket steering, supersonic secondary jet location, TVC in spacecraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
142 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
141 A Model for Optimal Design of Mixed Renewable Warranty Policy for Non-Repairable Weibull Life Products under Conflict between Customer and Manufacturer Interests

Authors: Saleem Z. Ramadan

Abstract:

A model is presented to find the optimal design of the mixed renewable warranty policy for non-repairable Weibull life products. The optimal design considers the conflict of interests between the customer and the manufacturer: the customer interests are longer full rebate coverage period and longer total warranty coverage period, the manufacturer interests are lower warranty cost and lower risk. The design factors are full rebate and total warranty coverage periods. Results showed that mixed policy is better than full rebate policy in terms of risk and total warranty coverage period in all of the three bathtub regions. In addition, results showed that linear policy is better than mixed policy in infant mortality and constant failure regions while the mixed policy is better than linear policy in ageing region of the model. Furthermore, the results showed that using burn-in period for infant mortality products reduces warranty cost and risk.

Keywords: Reliability, Mixed warranty policy, Optimization, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
140 A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
139 Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

Authors: Aleksandra Mišan, Bojana Šarić, Nataša Nedeljković, Mladenka Pestorić, Pavle Jovanov, Milica Pojić, Jelena Tomić, Bojana Filipčev, Miroslav Hadnađev, Anamarija Mandić

Abstract:

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

Keywords: Baking process, blueberry pomace, gluten-free cookies, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
138 Efficiency Based Model for Solar Urban Planning

Authors: Amado, M. P., Amado, A., Poggi, F., Correia de Freitas, J.

Abstract:

Today is widely understood that global energy consumption patterns are directly related to the urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals.

In this paper a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities and economic development and the local and global environment while safeguarding fairness in the energy sector.

Keywords: Solar urban planning, solar smart city, urban development, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
137 An Algorithm Proposed for FIR Filter Coefficients Representation

Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman

Abstract:

Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.

Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
136 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597