Search results for: energy use efficiency.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4774

Search results for: energy use efficiency.

2974 Photovoltaic Small-Scale Wastewater Treatment Project for Rural and New-Cultivated Areas in Egypt

Authors: Fadia M. A. Ghali

Abstract:

The problem of wastewater treatment in Egypt is a two-fold problem; the first part concerning the existing rural areas, the second one dealing with new industrial/domestic areas. In Egypt several agricultural projects have been initiated by the government and the private sector as well, in order to change its infrastructure. As a reliable energy source, photovoltaic pumping systems have contributed to supply water for local rural communities worldwide; they can also be implemented to solve the problem “wastewater environment pollution". The solution of this problem can be categorised as recycle process. In addition, because of regional conditions past technologies are being reexamined to select a smallscale treatment system requiring low construction and maintenance costs. This paper gives the design guidelines of a Photovoltaic Small- Scale Wastewater Treatment Plant (PVSSWTP) based on technologies that can be transferred.

Keywords: Renewable energy sources, Photovoltaic, small-scale projects, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2973 Numerical and Experimental Assessment of a PCM Integrated Solar Chimney

Authors: J. Carlos Frutos Dordelly, M. Coillot, M. El Mankibi, R. Enríquez Miranda, M. José Jimenez, J. Arce Landa

Abstract:

Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m3/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 °C and allows the activation of PCM panels.

Keywords: Energy storage, passive ventilation, phase changing materials, solar chimney, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
2972 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB

Authors: Deepak Kumar, Vivek Kumar, V. P. Singh

Abstract:

This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.

Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
2971 Efficiency of Investments, Financed from EU Funds in Small and Medium Enterprises in Poland

Authors: Jolanta Brodowska-Szewczuk

Abstract:

The article includes the results and conclusions from empirical researches that had been done. The research focuses on the impact of investments made in small and medium-sized enterprises financed from EU funds on the competitiveness of these companies. The researches includes financial results in sales revenue and net income, expenses, and many other new products/services on offer, higher quality products and services, more modern methods of production, innovation in management processes, increase in the number of customers, increase in market share, increase in profitability of production and provision of services. The main conclusions are that, companies with direct investments under this measure shall apply the modern methods of production. The consequence of this is to increase the quality of our products and services. Furthermore, both small and medium-sized enterprises have introduced new products and services. Investments were carried out, thus enabling better work organization in enterprises. Entrepreneurs would guarantee higher quality of service, which would result in better relationships with their customers, what is more, noting the rise in number of clients. More than half of the companies indicated that the investments contributed to the increase in market share. Same thing as for market reach and brand recognition of particular company. An interesting finding is that, investments in small enterprises were more effective than medium-sized enterprises.

Keywords: Competitiveness, efficiency, EU funds, small and medium-sized enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
2970 The Creation of Sustainable Architecture by use of Transformable Intelligent Building Skins

Authors: Maziar Asefi

Abstract:

Built environments have a large impact on environmental sustainability and if it is not considered properly can negatively affect our planet. The application of transformable intelligent building systems that automatically respond to environmental conditions is one of the best ways that can intelligently assist us to create sustainable environment. The significance of this issue is evident as energy crisis and environmental changes has made the sustainability the main concerns in many societies. The aim of this research is to review and evaluate the importance and influence of transformable intelligent structure on the creation of sustainable architecture. Intelligent systems in current buildings provide convenience through automatically responding to changes in environmental conditions, reducing energy dissipation and increase of the lifecycle of buildings. This paper by analyzing significant intelligent building systems will evaluate the potentials of transformable intelligent systems in the creation of sustainable architecture and environment.

Keywords: Transformable, Sustainable architecture, Intelligent building system, Environment condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4064
2969 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu

Abstract:

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
2968 Risk Level Evaluation for Power System Facilities in Smart Grid

Authors: Sung-Hun Lee, Yun-Seong Lee, Jin-O Kim

Abstract:

Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. In order to apply the RCM method to the Smart Grid, a precedence study for the new structure of rearranged system should be performed due to introduction of additional installation such as renewable and sustainable energy resources, energy storage devices and advanced metering infrastructure. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities in the Smart Grid using the Risk Priority Number. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the Smart Grid system. Finally, the feasible technical method is discussed to estimate the risk potential as part of the RCM procedure.

Keywords: Expert System, FMECA, Fuzzy Theory, Reliability Centered Maintenance, Risk Priority Number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
2967 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
2966 Comparative Analysis between Different Proposed Responsive Façade Designs for Reducing the Solar Radiation on the West Façade in the Hot Arid Region

Authors: Merna H. Ibrahim

Abstract:

Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effectively way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and achieving comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive façade designs in terms of solar radiation reduction on the west façade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of the solar radiation for each proposed responsive facades on the west façade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance.

Keywords: kinetic facades, mechanism of movement, responsive architecture, solar radiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
2965 Electrolysis Ship for Green Hydrogen Production and Possible Applications

Authors: Julian David Hunt, Andreas Nascimento

Abstract:

Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.

Keywords: Green hydrogen, electrolysis ship, renewable energies, seasonal variations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
2964 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
2963 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health

Authors: E. Cintura, M. I. Gomes

Abstract:

Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.

Keywords: Hygroscopicity, hygrothermal comfort, mortar, plaster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
2962 A Study on Energy-efficient Temperature Control

Authors: Mitsuyuki Kawakami, Kimihiro Yamanaka

Abstract:

The top-heavy demographic of low birth-rate and longer lifespan is a growing social problem, and one of its expected effects will be a shortage of young workers and a growing reliance on a workforce of middle-aged and older people. However, the environment of today's industrial workplace is not particularly suited to middle-aged and older workers, one notable problem being temperature control. Higher temperatures can cause health problems such as heat stroke, and the number of cases increases sharply in people over 65. Moreover, in conditions above 33°C, older people can develop circulatory system disorders, and also have a higher chance of suffering a fatal heart attack. We therefore propose a new method for controlling temperature in the indoor workplace. In this study two different verification experiments were conducted, with the proposed temperature control method being tested in cargo containers and conventional houses. The method's effectiveness was apparent in measurements of temperature and electricity consumption

Keywords: CO2 reduction, Energy saving, Temperature control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
2961 Investigation on Metalosalen Complexes Binding to DNA using Ab Initio Calculations

Authors: M. Jahangiri Lahkani, Gh. Ghassemi, N. Sohrabi, N. Rasooli

Abstract:

Geometry optimizations of metal complexes of Salen(bis(Salicylidene)1,2-ethylenediamine) were carried out at HF and DFT methods employing Lanl2DZ basis set. In this work structural, energies, bond lengths and other physical properties between Mn2+,Cu2+ and Ni2+ ions coordinated by salen–type ligands are examined. All calculations were performed using Gaussian 98W program series. To investigate local aromaticities, NICS were calculated at all centers of rings. The higher the band gap indicating a higher global aromaticity. The possible binding energies have been evaluated. We have evaluated Frequencies and Zero-point energy with freq calculation. The NICS(Nucleous Independent Chemical Shift) Results show Ni(II) complexes are antiaromatic and aromaticites of Mn(II) complexes are larger than Cu(II) complexes. The energy Results show Cu(II) complexes are stability than Mn(II) and Ni(II) complexes.

Keywords: Frequency Calculation, Hartree-Fock (HF), Nucleous Independent Chemical Shift (NICS), Salen(bis(Salicylidene)1, 2-ethylenediamine).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2960 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies

Authors: F. Vallée, J-F. Toubeau, Z. De Grève, J. Lobry

Abstract:

When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.

Keywords: Expected Energy not Served, Loss of Load Expectation, Monte Carlo simulation, reliability, wind generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
2959 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi

Abstract:

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
2958 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

Authors: Andras Szekrenyes

Abstract:

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
2957 Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Authors: Brice Nya, Detlef Schulz

Abstract:

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

Keywords: Load management, power management, electrical load analysis, flight mission, power load profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
2956 Energy Evaluation and Utilization of Cassava Peel for Lactating Dairy Cows

Authors: Pipat Lounglawan, Yutthapong Sornwongkaew, Wassana Lounglawan, Wisitiporn Suksombat

Abstract:

The experiment was then conducted to investigate the effect of cassava peel addition in the concentrate on the performance of lactating dairy cows. Twenty four Holstein Friesian crossbred (>87.5% Holstein Friesian) lactating dairy cows in mid lactation; averaging 12.2+2.1 kg of milk, 119+45 days in milk, 44.1+6.2 months old and 449+33 kg live weight, were stratified for milk yield, days in milk, age, stage of lactation and body weight, and then randomly allocated to three treatment groups. The first, second and third groups were fed concentrates containing the respective cassava peel, 0, 20 and 40%. All cows were fed ad libitum corn silage and freely access to clean water. Dry matter intake, 4%FCM, milk composition and body weight change were affected (P<0.05) by the third treatments (40%). The present study indicated that 20% cassava peel can be used in the concentrate for lactating dairy cows.

Keywords: Cassava peel, Energy evaluation, Milk production, Dairy cattle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
2955 Neural Networks for Short Term Wind Speed Prediction

Authors: K. Sreelakshmi, P. Ramakanthkumar

Abstract:

Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.

Keywords: Short term wind speed prediction, Neural networks, Back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
2954 Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Authors: R. C. J. Mphahlele, K. Bolton, H. Kasaini

Abstract:

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

Keywords: Activated Carbons, Binding energy, DFT, Force fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
2953 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction

Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez

Abstract:

Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.

Keywords: Black sand mineral, methyl orange, oxidation, photocatalysis, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
2952 Refractive Index, Excess Molar Volume and Viscometric Study of Binary Liquid Mixture of Morpholine with Cumene at 298.15 K, 303.15 K, and 308.15 K

Authors: B. K. Gill, Himani Sharma, V. K. Rattan

Abstract:

Experimental data of refractive index, excess molar volume and viscosity of binary mixture of morpholine with cumene over the whole composition range at 298.15 K, 303.15 K, 308.15 K and normal atmospheric pressure have been measured. The experimental data were used to compute the density, deviation in molar refraction, deviation in viscosity and excess Gibbs free energy of activation as a function of composition. The experimental viscosity data have been correlated with empirical equations like Grunberg- Nissan, Herric correlation and three body McAllister’s equation. The excess thermodynamic properties were fitted to Redlich-Kister polynomial equation. The variation of these properties with composition and temperature of the binary mixtures are discussed in terms of intermolecular interactions.

Keywords: Cumene, excess Gibbs free energy, excess molar volume, morpholine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
2951 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
2950 Analysis of Data Gathering Schemes for Layered Sensor Networks with Multihop Polling

Authors: Bhed Bahadur Bista, Danda B. Rawat

Abstract:

In this paper, we investigate multihop polling and data gathering schemes in layered sensor networks in order to extend the life time of the networks. A network consists of three layers. The lowest layer contains sensors. The middle layer contains so called super nodes with higher computational power, energy supply and longer transmission range than sensor nodes. The top layer contains a sink node. A node in each layer controls a number of nodes in lower layer by polling mechanism to gather data. We will present four types of data gathering schemes: intermediate nodes do not queue data packet, queue single packet, queue multiple packets and aggregate data, to see which data gathering scheme is more energy efficient for multihop polling in layered sensor networks.

Keywords: layered sensor network, polling, data gatheringschemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
2949 Analysis of the Reasons behind the Deteriorated Standing of Engineering Companies during the Financial Crisis

Authors: Levan Sabauri

Abstract:

In this paper, we discuss the deteriorated standing of engineering companies, some of the reasons behind it and the problems facing engineering enterprises during the financial crisis. We show the part that financial analysis plays in the detection of the main factors affecting the standing of a company, classify internal problems and the reasons influencing efficiency thereof. The publication contains the analysis of municipal engineering companies in post-Soviet transitional economies. In the wake of the 2008 world financial crisis the issue became even more poignant. It should be said though that even before the problem had been no less acute for some post-Soviet states caught up in a lengthy transitional period. The paper highlights shortcomings in the management of transportation companies, with new, more appropriate methods suggested. In analyzing the financial stability of a company, three elements need to be considered: current assets, investment policy and structural management of the funding sources leveraging the stability, should be focused on. Inappropriate management of the three may create certain financial problems, with timely and accurate detection thereof being an issue in terms of improved standing of an enterprise. In this connection, the publication contains a diagram reflecting the reasons behind the deteriorated financial standing of a company, as well as a flow chart thereof. The main reasons behind low profitability are also discussed.

Keywords: Efficiency, financial management, financial analysis funding structure, financial sustainability, investment policy, profitability, solvency, working capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
2948 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
2947 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections

Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu

Abstract:

In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.

Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
2946 An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Authors: S. Malathi, P. Seenuvasakumaran

Abstract:

Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Keywords: Sol-gel, dislocation density, energy band gap, VSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
2945 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: Biogas, Exergy, Optimization, SOFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179