Search results for: renewable energy power generation.
4078 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils
Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole
Abstract:
The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.Keywords: Esters, emission, performance, and vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22184077 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.
Keywords: Green Home, Resident Aware, Resident Profile, Activity Learning, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21594076 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities
Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny
Abstract:
From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.Keywords: Sustainability, Electric, Bus, Noise, GreenCharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22854075 A Control Strategy Based on UTT and ISCT for 3P4W UPQC
Authors: Yash Pal, A.Swarup, Bhim Singh
Abstract:
This paper presents a novel control strategy of a threephase four-wire Unified Power Quality (UPQC) for an improvement in power quality. The UPQC is realized by integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a thee-phase, four leg voltage source inverter (VSI) and the series APF is realized using a three-phase, three leg VSI. A control technique based on unit vector template technique (UTT) is used to get the reference signals for series APF, while instantaneous sequence component theory (ISCT) is used for the control of Shunt APF. The performance of the implemented control algorithm is evaluated in terms of power-factor correction, load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell in a three-phase four-wire distribution system for different combination of linear and non-linear loads. In this proposed control scheme of UPQC, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, there by reducing the computational delay and the required sensors. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC.Keywords: Power Quality, UPQC, Harmonics, Load Balancing, Power Factor Correction, voltage harmonic mitigation, currentharmonic mitigation, voltage sag, swell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22704074 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.
Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23804073 Fuzzy Tuned PID Controller with D-Q-O Reference Frame Technique Based Active Power Filter
Authors: Kavala Kiran Kumar, R. Govardhana Rao
Abstract:
Active power filter continues to be a powerful tool to control harmonics in power systems thereby enhancing the power quality. This paper presents a fuzzy tuned PID controller based shunt active filter to diminish the harmonics caused by non linear loads like thyristor bridge rectifiers and imbalanced loads. Here Fuzzy controller provides the tuning of PID, based on firing of thyristor bridge rectifiers and variations in input rms current. The shunt APF system is implemented with three phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common coupling for compensating the current harmonics by injecting equal but opposite filter currents. These controllers are capable of controlling dc-side capacitor voltage and estimating reference currents. Hysteresis Current Controller (HCC) is used to generate switching signals for the voltage source inverter. Simulation studies are carried out with non linear loads like thyristor bridge rectifier along with unbalanced loads and the results proved that the APF along with fuzzy tuned PID controller work flawlessly for different firing angles of non linear load.
Keywords: Active power filters (APF), Fuzzy logic controller (FLC), Hysteresis current controller (HCC), PID, Total harmonic Distortion (THD), Voltage source inverter (VSI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25314072 Despiking of Turbulent Flow Data in Gravel Bed Stream
Authors: Ratul Das
Abstract:
The present experimental study insights the decontamination of instantaneous velocity fluctuations captured by Acoustic Doppler Velocimeter (ADV) in gravel-bed streams to ascertain near-bed turbulence for low Reynolds number. The interference between incidental and reflected pulses produce spikes in the ADV data especially in the near-bed flow zone and therefore filtering the data are very essential. Nortek’s Vectrino four-receiver ADV probe was used to capture the instantaneous three-dimensional velocity fluctuations over a non-cohesive bed. A spike removal algorithm based on the acceleration threshold method was applied to note the bed roughness and its influence on velocity fluctuations and velocity power spectra in the carrier fluid. The velocity power spectra of despiked signals with a best combination of velocity threshold (VT) and acceleration threshold (AT) are proposed which ascertained velocity power spectra a satisfactory fit with the Kolmogorov “–5/3 scaling-law” in the inertial sub-range. Also, velocity distributions below the roughness crest level fairly follows a third-degree polynomial series.
Keywords: Acoustic Doppler Velocimeter, gravel-bed, spike removal, Reynolds shear stress, near-bed turbulence, velocity power spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11804071 Assembly and Alignment of Ship Power Plants in Modern Shipbuilding
Authors: A. O. Mikhailov, K. N. Morozov
Abstract:
Fine alignment of main ship power plants mechanisms and shaft lines provides long-term and failure-free performance of propulsion system while fast and high-quality installation of mechanisms and shaft lines decreases common labor intensity. For checking shaft line allowed stress and setting its alignment it is required to perform calculations considering various stages of life cycle. In 2012 JSC SSTC developed special software complex “Shaftline” for calculation of alignment of having its own I/O interface and display of shaft line 3D model. Alignment of shaft line as per bearing loads is rather labor-intensive procedure. In order to decrease its duration, JSC SSTC developed automated alignment system from ship power plants mechanisms. System operation principle is based on automatic simulation of design load on bearings. Initial data for shaft line alignment can be exported to automated alignment system from PC “Shaft line”.
Keywords: ANSYS, propulsion shaft, shaftline alignment, ship power plants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31194070 Effect of Environmental Conditions on Energy Efficiency of AAC-based Building Envelopes
Authors: V. Koci, J. Madera, R. Cerny
Abstract:
Calculations of energy efficiency of several AACbased building envelopes under different climatic conditions are presented. As thermal insulating materials, expanded polystyrene and hydrophobic and hydrophilic mineral wools are assumed. The computations are accomplished using computer code HEMOT developed at Department of Materials Engineering, Faculty of Civil Engineering at the Czech Technical University in Prague. The climatic data of Athens, Kazan, Oslo, Prague and Reykjavík are obtained using METEONORM software.Keywords: climatic conditions, computational simulation, energy efficiency, thermal insulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14654069 Sustainable Development and Kish Island Environment Protection, using Wind Energy
Authors: Amir Gandomkar
Abstract:
Kish Islands in South of Iran is located in coastal water near Hormozgan Province. Based on the wind 3-hour statistics in Kish station, the mean annual windspeed in this Island is 8.6 knot (4.3 m/s). The maximum windspeed recorded in this stations 47 knot (23.5 m/s). In 45.7 percent of recorded times, windspeed has been Zero or less than 8 knot which is not suitable to use the wind energy. But in 54.3 percent of recorded times, windspeed has been more than 8 knot and suitable to use wind energy to run turbines. In 40.2 percent of recorded times, windspeed has been between 8 to 16 knot, in 13 percent of times between 16 to 24 knot and in 1 percent of times it has been higher than 24 knot. In this station, the direction of winds higher than 8 is west and wind direction in Kish station is stable in most times of the year.With regard to high – speed and stable direction winds during the year and also shallow coasts near this is land, it is possible to build offshore wind farms near Kish Island and utilize wind energy produce the electricity required in this Island during most of the year.Keywords: Kish Island, Wind energy, Offshore wind farm, Windspeed, Wind direction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17244068 Multi-criteria Optimization of Square Beam using Linear Weighted Average Model
Authors: Ali Farhaninejad, Rizal Zahari, Ehsan Rasooliyazdi
Abstract:
Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.Keywords: Crashworthiness, side impact, energy absorption, multi-objective optimization, Square beam, SEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18344067 Improved Power Spectrum Estimation for RR-Interval Time Series
Authors: B. S. Saini, Dilbag Singh, Moin Uddin, Vinod Kumar
Abstract:
The RR interval series is non-stationary and unevenly spaced in time. For estimating its power spectral density (PSD) using traditional techniques like FFT, require resampling at uniform intervals. The researchers have used different interpolation techniques as resampling methods. All these resampling methods introduce the low pass filtering effect in the power spectrum. The lomb transform is a means of obtaining PSD estimates directly from irregularly sampled RR interval series, thus avoiding resampling. In this work, the superiority of Lomb transform method has been established over FFT based approach, after applying linear and cubicspline interpolation as resampling methods, in terms of reproduction of exact frequency locations as well as the relative magnitudes of each spectral component.Keywords: HRV, Lomb Transform, Resampling, RR-intervals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32374066 An Improved Cooperative Communication Scheme for IoT System
Authors: Eui-Hak Lee, Jae-Hyun Ro, Hyoung-Kyu Song
Abstract:
In internet of things (IoT) system, the communication scheme with reliability and low power is required to connect a terminal. Cooperative communication can achieve reliability and lower power than multiple-input multiple-output (MIMO) system. Cooperative communication increases the reliability with low power, but decreases a throughput. It has a weak point that the communication throughput is decreased. In this paper, a novel scheme is proposed to increase the communication throughput. The novel scheme is a transmission structure that increases transmission rate. A decoding scheme according to the novel transmission structure is proposed. Simulation results show that the proposed scheme increases the throughput without bit error rate (BER) performance degradation.Keywords: Cooperative communication, IoT, STBC, Transmission rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22554065 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20794064 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency
Authors: Shao-Ku Kao
Abstract:
This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.Keywords: Wireless power transfer, active diode, delay compensation, time to voltage converter, PCE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7734063 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: M. Ferguson, T. Konkova, I. Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.
Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5014062 Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking
Authors: Toyoyuki Honjo, Takeshi Hayashi, Akinori Nagano, Zhi-Wei Luo
Abstract:
For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot-s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajectory that is close to discontinuous optimal trajectory. In this paper, we proposed the new target trajectory based on a position in the walking direction. We surveyed relations between walking performance and the parameters that form the target trajectory via numerical simulations. As a result, it was found that our target trajectory has the similar characteristics of a parametrically excited inverted pendulum.Keywords: Dynamic Bipedal Walking, Parametric Excitation, Target Trajectory Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16774061 The Catalytic Effects of Potassium Dichromate on the Pyrolysis of Polymeric Mixtures Part II: Hazelnut Shell and Ultra-high Molecular Weight Polyethylene and their Blend Cases
Authors: B. Aydinli, A. Caglar
Abstract:
Renewable energy sources have gained ultimate urgency due to the need of the preservation of the environment for a sustainable development. Pyrolysis is an ultimate promising process in the recycling and acquisition of precious chemicals from wastes. Here, the co-pyrolysis of hazelnut shell with ultra-high molecular weight polyethylene was carried out catalytically and noncatalytically at 500 and 650 ºC. Potassium dichromate was added in certain amounts to act as a catalyst. The liquid, solid and gas products quantities were determined by gravimetry. As a main result, remarkable increases in gasification were observed by using this catalyst for pure components and their blends especially at 650 ºC. The increase in gas product quantity was compensated mainly with the decreases in the solid products and additionally in some cases liquid products quantities. These observations may stem from mainly the activation of carbon-carbon bonds rather than carbon-hydrogen bonds via potassium dichromate. Also, the catalytic effect of potassium dichromate on HS: PEO and HS: UHMWPE co-pyrolysis was compared.
Keywords: Hazelnut shell, Polyethylene oxide, Potassium Dichromate, Pyrolysis, UHMWPE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18544060 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium
Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid
Abstract:
Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae are promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the quality of biodiesel produced from lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. At the optimum conditions, the highest biodiesel production yield was found to be 82%. The fuel properties of the produced biodiesel, without any separation step, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.Keywords: Biodiesel, fuel standards, lipase, microalgae, Supercritical CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25084059 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)
Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha
Abstract:
Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be acceleratedKeywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30644058 Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method
Authors: Adrian T. Plesca
Abstract:
This paper describes a three-dimensional thermal model of the current path included in the low voltage power circuit breakers. The model can be used to analyse the thermal behaviour of the current path during both steady-state and transient conditions. The current path lengthwise temperature distribution and timecurrent characteristic of the terminal connections of the power circuit breaker have been obtained. The influence of the electric current and voltage drop on main electric contact of the circuit breaker has been investigated. To validate the three-dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Current path, power circuit breakers, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26964057 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.
Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9704056 Bioethanol: Indonesian Macro-Algae as a Renewable Feedstock for Liquid Fuel
Authors: T. Poespowati, E. Marsyahyo, R. Kartika-Dewi
Abstract:
This experimental study aims at studying the conversion of macro-algae into bioethanol under several steps of procedure: preparation, pre-treatment, fermentation, and distillation. The main objective of this work was to investigate the role of buffer’s type as a stabiliser of pH level and fermentation time on the yield of ethanol. For this purpose, experiments were carried out on biomass macro-algae to de-couple the pre-treatment and fermentation processes from those associated with distillation process. β- glucosidase was used as cellulose decomposer during hydrolysis step and yeast was used during fermentation process. The species of macro-algae utilised as energy feedstock was Ulva lactuca and it was harvested from southern coast of Central of Java Island – Indonesia. Experiments were conducted in a simple fermenter over a different buffer: citrate buffer and acetic buffer, and over a range of fermentation times between 5 to 20 days. The ethanol production was found to be significantly affected by both variables. The optimum time of fermentation was 10 days with citrate buffer; result in 0.88458% of ethanol, and the ethanol content after distillation process was shown 0.985015%.
Keywords: Fermentation, ulva-lactuca, buffer, β-glucosidase, bioethanol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24374055 Development of Machinable Ellipses by NURBS Curves
Authors: Yuan L. Lai, Jian H. Chen, Jui P. Hung
Abstract:
Owning to the high-speed feed rate and ultra spindle speed have been used in modern machine tools, the tool-path generation plays a key role in the successful application of a High-Speed Machining (HSM) system. Because of its importance in both high-speed machining and tool-path generation, approximating a contour by NURBS format is a potential function in CAD/CAM/CNC systems. It is much more convenient to represent an ellipse by parametric form than to connect points laboriously determined in a CNC system. A new approximating method based on optimum processes and NURBS curves of any degree to the ellipses is presented in this study. Such operations can be the foundation of tool-radius compensation interpolator of NURBS curves in CNC system. All operating processes for a CAD tool is presented and demonstrated by practical models.Keywords: Ellipse, Approximation, NURBS, Optimum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22984054 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30204053 Stabilization of Clay Soil Using A-3 Soil
Authors: Mohammed Mustapha Alhaji, Salawu Sadiku
Abstract:
A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24024052 Harmonic Comparison between Fluorescent and WOLED (White Organic LED) Lamps
Authors: Hari Maghfiroh, Fadhila Tresna Nugraha, Harry Prabowo
Abstract:
Fluorescent and WOLED are widely used because it consumes less energy. However, both lamps cause a harmonics because it has semiconductors components. Harmonic is a distorted sinusoidal electric wave and cause excess heat. This study compares the amount of harmonics generated by both lamps. The test shows that both lamps have THDv(Total Harmonics Distortion of Voltage) almost the same with average 2.5% while the average of WOLED's THDi(Total Harmonics Distortion of Current) is lower than fluorescent has. The average WOLED's THDi is 29.10 % and fluorescent's 'THDi is 87. 23 %.Keywords: Fluorescent, harmonic, power factor, WOLED
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18034051 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.
Keywords: Cuckoo search algorithm, optimization, power system, var compensators, voltage stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13474050 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System
Authors: Ahmed Bensenouci
Abstract:
This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20554049 Low Power Bus Binding Based on Dynamic Bit Reordering
Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho
Abstract:
In this paper, the problem of reducing switching activity in on-chip buses at the stage of high-level synthesis is considered, and a high-level low power bus binding based on dynamic bit reordering is proposed. Whereas conventional methods use a fixed bit ordering between variables within a bus, the proposed method switches a bit ordering dynamically to obtain a switching activity reduction. As a result, the proposed method finds a binding solution with a smaller value of total switching activity (TSA). Experimental result shows that the proposed method obtains a binding solution having 12.0-34.9% smaller TSA compared with the conventional methods.Keywords: bit reordering, bus binding, low power, switching activity matrix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304