

Abstract—In this paper, the problem of reducing switching

activity in on-chip buses at the stage of high-level synthesis is
considered, and a high-level low power bus binding based on dynamic
bit reordering is proposed. Whereas conventional methods use a fixed
bit ordering between variables within a bus, the proposed method
switches a bit ordering dynamically to obtain a switching activity
reduction. As a result, the proposed method finds a binding solution
with a smaller value of total switching activity (TSA). Experimental
result shows that the proposed method obtains a binding solution
having 12.0-34.9% smaller TSA compared with the conventional
methods.

Keywords—bit reordering, bus binding, low power, switching
activity matrix

I. INTRODUCTION
INCE the functions of mobile devices such as a mp3 player,
a hand-help phone, a tablet PC, .etc become complex and
performance improves, gate counts in a system-on-chip

(SOC) embedded in the devices increase considerably and
operating frequency becomes very fast. Combined with a deep
sub-micron process, this trend incurs the sharp increase of
dynamic power dissipation, and hence hot temperature due to
dynamic power dissipation brings the malfunction of
operations of the SOC and the increase of package cost, e.g.
adding a cooling device.

Moreover, as the deep sub-micron process becomes popular,
power consumption in on-chip buses becomes a critical
problem. For example, dynamic power consumption in on-chip
buses consists of 20-36% of total dynamic power dissipation
[1].

Many techniques have been developed to reduce dynamic
power in on-chip buses, and among them, it is known as
effective to minimize switching activity (SA) in bus wires
because reducing switching activity, a.k.a. output transition
does not influence the performance of the circuit and can be
applied at any level of design time, i.e. architectural level, RTL
level, and gate level.

Jihyung Kim is with the System LSI Division, Samsung Electronics Co. Ltd.,

Yongin, Korea, and with Sungkyunkwan University, Suwon. Korea (e-mail:
kim_ji_hyung@samsung.com, johnny71@skku.edu).

Taejin Kim is with the System LSI Division, Samsung Electronics Co. Ltd.,
Yongin, Korea (e-mail: taejinkim@samsung.com).

Sungho Park is with the System LSI Division, Samsung Electronics Co. Ltd.,
Yongin, Korea (e-mail: sh603.park@samsung.com).

Jun-Dong Cho is a corresponding author, and with Sungkyunkwan
University, Suwon. Korea (e-mail: jdcho@skku.edu).

The techniques of reducing SA are proposed in [2]-[6] and
they are divided into two categories: bus binding and bus
encoding. Whereas bus binding techniques such as [2]-[3] are
mainly applied at the stage of high-level synthesis, bus
encoding methods such as [4]-[6] are generally applied at the
step of physical implementation. It is known that as low power
binding technique is applied at the higher design step, more
dynamic power reduction can be achieved [7].

In this paper, the reduction of dynamic power in on-chip
buses at the architectural level a.k.a. behavioral level or
high-level, is considered, and low power bus binding technique
is proposed to minimize switching activity in on-chip buses by
switching a bit ordering dynamically between variables within
a bus.

The main contributions of this paper are as follows:
1) It is noticed that that the distribution of switching activity

between the bits of two adjacent variables within a bus is
not uniform, and therefore the reduction of switching
activity can be achieved by switching a bit ordering
dynamically rather than using a fixed ordering.

2) The problem of obtaining an optimal bit ordering to
produce minimum switching activity between the bits of
two adjacent variables is defined as the problem of
minimum weight bipartite matching, and a refined method
is adopted to solve it in a polynomial running time.

3) Dynamic bit reordering is performed periodically by
using a real input data, and therefore the proposed method
is robust to the variation of the statistical property of an
input data.

The remainder of this paper is organized as follows. Section

II introduces low power bus binding for switching activity
minimization, and the proposed method is described in Section
III. Section IV discusses experimental result, and conclusion is
drawn in Section V.

II. BUS BINDING FOR SWITCHING ACTIVITY MINIMIZATION

A. Problem Definition of Low Power Bus Binding
Dynamic power is calculated as follows:

Pdyn = Ptrans · CL · Vdd
2 · fclock (1)

where Ptrans is the probability of an output transition, CL is the

load capacitance, Vdd is the supply voltage, and fclock is the
frequency of system clock [8].

Low Power Bus Binding Based on
Dynamic Bit Reordering

Jihyung Kim, Taejin Kim, Sungho Park, and Jun-Dong Cho

S

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

62International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

Fig. 1 shows a scheduled DFG of a differential equation
solver where variables x’ and y’ are cyclic variables, and are
denoted as x and y in the next iteration instance of the loop,
respectively.

Fig. 1 Data flow graph of differential equation solver

It is assumed that a scheduled data flow graph (DFG) is

given as an input, and the technique of minimizing switching
activity is applied to bus binding. Bit width of each variable is
16.

Conventionally, many researches pay attention to the
problem of minimizing total switching activity (TSA) that is the
summation of SA in each bus group, that is,

 TSA = ∑(∀k of buses) SAk (2)

where, SAk(x, y) denote the expected number of bit lines on
bus k that toggle when data transfers x and y are successively
implemented on the bus, and SAk is the sum of all SAk(·) for
every pair of consecutive data transfers on bus k [2].

TABLE I shows the values for the data transfers in Fig. 1.
For example, SA(u, t2) = 7.37 indicates that there is an average
of 7.37 bit lines out of 16 possible toggles between data
transfers u and t2. Note that this matrix is generated by
assuming the fixed bit ordering between the bits of two
variables shown in Fig.3-(a).

Bus binding can be mathematically formulated as follows
[9]:

A scheduled DFG = (O, V, C, Sf) consists of:
1) A finite set of operators, denoted O = { o1, o2, … ,

op }.
2) A finite set of variables of operators, denoted V = { v1,

v2, … , vq }.
3) A finite set of control steps, denoted C = { c1, c2, … , c

r }
4) A scheduling function Sf : O → C, where S(oi) = cj

denotes that operator corresponding to oi ∈ O is
scheduled at control step cj. ■

Note that if an operator oi is scheduled at control step cj by

scheduling function S(oi) = cj, the variables vk that are operands
to the operator oi are located at control step cj.

Bus binding is performed for this scheduled DFG. Let B is a
finite set of buses, denoted B = { b1, b2, … , bs } and, N(vi, cj) be
the number of variables vi located at control step ci. It is
assumed that the number of buses is limited to the maximum
number of variables located in one control step, i.e. s = max
{ N(vi, cj) } where j = 1, 2, …, r.

TABLE I

LONG-TERM SWITCHING ACTIVITIES MATRIX OF DFG IN FIG. 1
(BETWEEN VARIABLES, ITERATION = 100,000)

 u dx 3 x y t1 t2 t3 t4 t5 t6 u1 y1 x’ y’
u 0.00 7.50 7.51 7.51 7.49 7.50 7.37 7.83 7.76 8.01 6.99 0.00 8.00 8.00 7.88

dx 7.50 0.00 7.50 7.51 7.51 7.50 7.84 7.84 7.74 7.51 8.13 7.50 7.49 8.00 8.13

3 7.51 7.50 0.00 7.49 7.50 8.26 7.83 7.83 8.26 8.24 8.12 7.51 8.26 8.00 8.12

x 7.51 7.51 7.49 0.00 7.49 8.00 5.11 7.84 7.75 8.00 8.12 7.51 8.01 8.00 8.13

y 7.49 7.51 7.50 7.49 0.00 8.00 7.84 5.11 8.00 7.50 8.00 7.49 7.82 8.00 7.50

t1 7.50 7.50 8.26 8.00 8.00 0.00 8.01 8.00 7.01 7.59 7.75 7.50 7.01 8.00 7.87

t2 7.83 7.84 7.83 5.11 7.84 8.01 0.00 7.94 7.74 8.00 8.13 7.83 8.00 8.00 8.13

t3 7.83 7.84 7.83 7.84 5.11 8.00 7.94 0.00 8.00 7.51 7.00 7.83 7.90 7.99 7.99

t4 7.76 7.74 8.26 7.75 8.00 7.01 7.74 8.00 0.00 7.50 8.01 7.76 7.34 8.12 8.00

t5 8.01 7.51 8.24 8.00 7.50 7.49 8.00 7.51 7.50 0.00 8.01 8.01 7.34 8.12 8.00

t6 6.99 8.13 8.12 8.12 8.00 7.75 8.13 8.00 8.01 8.01 0.00 6.99 7.99 7.84 7.75

u1 0.00 7.50 7.51 7.51 7.49 7.50 7.83 7.83 7.76 8.01 6.99 0.00 8.00 8.00 7.89

y1 8.00 7.49 8.26 8.01 7.82 7.01 8.00 7.90 7.34 7.34 7.99 8.00 0.00 7.99 8.01

x’ 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.99 8.12 8.00 7.84 8.00 7.99 0.00 7.88

y’ 7.88 8.13 8.12 8.13 7.50 7.87 8.13 7.70 8.00 8.01 7.75 7.88 8.01 7.88 0.00

Bus Binding is described in the following Definition.

<Definition> Bus Binding

Bus binding is a mapping Mf : V × C → B × C, where Mf(vi,
ck) = (bj, ck) denotes that variable corresponding to vi ∈ V

scheduled at control step ck, is bound to bus bj ∈ B at control
step ck, where V is a set of variable of operators and B is a set of
buses.

Fig. 2-(a) is a scheduled operator table extracted from a

scheduled DFG in Fig. 1, and the results of bus binding and
corresponding TSA are shown in (b) and (c).

Fig. 2 (a) Scheduled operator table (b), (c): Typical examples of bus

bindings

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

63International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

For that DFG, four bus groups are allocated to implement all
variables of ten operators. In (b) and (c) of Fig. 2, ‘group’
denotes the specific group of bus binding that starts at cstep 1,
and ends at cstep 7. For example, ‘group 1’ in Fig. 2-(b) shows
bus binding that consists of dx → t1 → t4 → dx, where an
empty node in cstep 4 denote that there is no variable in cstep 4.
Note that cstep 7 is inserted for cyclic execution with cstep 1.

Low power bus binding problem is summarized as follows:

< Low power bus binding problem >
Input: A scheduled DFG = (O, V, C, Sf)
Output: Bus binding solution with minimum TSA
Bus Binding: Mf : V × C → B × C ■

The motivation for this work is described as follows.
TABLE II shows the example of switching activity between

bits of u and t2 generated by inputting a random data, and
simulating the DFG for 30 iterations. Note that TABLE I is the
switching activity matrix (SAM) used by conventional binding
method (denoted as long-term SAM), and the proposed method
uses additional switching activity matrix between bits of
variables as shown in TABLE II (denoted as short-term SAM).

The number of iterations from 10 to 50 rather than 100,000 is
used to generate a short-term SAM because the proposed
method uses a real input data and it finds switching activity
periodically for small iterations to compensate the variations of
the distribution of switching activity. As explained in Section
IV, if the number of iterations increases, the distribution of
switching activity of input data becomes more uniform, and
therefore there is no possibility to reduce total switching
activity although dynamic bit reordering is performed.

TABLE II shows that the switching activity between the bits
of variables is not uniform, and there is an optimal bit ordering
between them. Moreover, the switching activity changes
because a real input data pattern varies, and therefore an
optimal bit ordering should be changed periodically in
accordance with the changed switching activity.

TABLE II

SHORT-TERM SWITCHING ACTIVITIES MATRIX FOR U AND T2 IN FIG. 1
(BETWEEN BITS, ITERATION = 30)

 t2
 u r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

l0 0.43 0.50 0.57 0.40 0.60 0.57 0.63 0.57 0.37 0.53 0.43 0.57 0.67 0.43 0.23 0.60

l1 0.50 0.57 0.43 0.60 0.47 0.63 0.50 0.57 0.37 0.53 0.63 0.43 0.60 0.43 0.43 0.53

l2 0.57 0.43 0.50 0.33 0.60 0.43 0.50 0.57 0.70 0.47 0.37 0.37 0.40 0.57 0.37 0.60

l3 0.33 0.40 0.53 0.37 0.37 0.40 0.53 0.60 0.40 0.57 0.40 0.67 0.70 0.47 0.33 0.50

l4 0.60 0.40 0.53 0.57 0.50 0.47 0.40 0.47 0.67 0.50 0.47 0.60 0.50 0.60 0.60 0.23

l5 0.33 0.60 0.40 0.70 0.43 0.40 0.33 0.47 0.67 0.37 0.47 0.47 0.50 0.53 0.47 0.50

l6 0.47 0.33 0.60 0.57 0.43 0.67 0.40 0.60 0.47 0.70 0.47 0.60 0.43 0.67 0.67 0.23

l7 0.33 0.53 0.60 0.50 0.63 0.53 0.33 0.53 0.53 0.50 0.60 0.60 0.57 0.47 0.47 0.57

l8 0.60 0.27 0.67 0.43 0.50 0.47 0.53 0.53 0.53 0.57 0.67 0.67 0.50 0.47 0.40 0.43

l9 0.57 0.57 0.57 0.60 0.40 0.37 0.43 0.57 0.37 0.47 0.63 0.63 0.47 0.50 0.57 0.40

l10 0.57 0.43 0.57 0.40 0.67 0.50 0.43 0.57 0.57 0.40 0.37 0.50 0.60 0.50 0.50 0.40

l11 0.43 0.63 0.50 0.47 0.53 0.43 0.57 0.50 0.23 0.47 0.50 0.57 0.47 0.30 0.57 0.60

l12 0.47 0.53 0.40 0.57 0.50 0.53 0.47 0.40 0.67 0.57 0.47 0.53 0.37 0.60 0.53 0.23

l13 0.53 0.40 0.53 0.50 0.43 0.60 0.40 0.60 0.53 0.57 0.53 0.53 0.43 0.40 0.53 0.63

l14 0.60 0.47 0.60 0.37 0.50 0.60 0.73 0.53 0.53 0.63 0.60 0.60 0.57 0.53 0.53 0.50

l15 0.53 0.40 0.60 0.50 0.37 0.60 0.47 0.47 0.53 0.50 0.47 0.60 0.37 0.53 0.53 0.43

Fig. 3 compares a fixed bit ordering and a bit reordering
between two variables, e.g. u and t2. Conventional method uses
a fixed bit ordering as shown in Fig. 3-(a), and generally a fixed
bit ordering denotes that each bit position from zero to fifteen
coincides with each other. In contrast, a proposed method uses
a bit reordering which scrambles a bit position in order to find
an optimal bit ordering having a minimum switching activity as
shown in Fig. 3-(b). In fact, the bit ordering in Fig. 3-(b) is the
optimal one having minimum switching activity between u and
t2. In this way, optimal bit orderings for all pairs of variables in
a DFG are found.

Fig. 3 (a) fixed bit ordering (b) bit reordering (optimal matching)

B. Minimum Weight Bipartite Matching Problem
A bit reordering problem can be formulated as a minimum

weight bipartite matching (MWBM) problem. To understand a
minimum weight perfect matching problem, some basic graph
terminology referred to [10] is explained:

 A graph G = (V, E) consists of a set V of vertices and a set E
of pairs of vertices called edges. For an edge e = (u, v), it is said
that the endpoints of e are u and v; it is also said that e is
incident to u and v. A graph G = (V, E) is bipartite if the vertex
set V can be partitioned into two sets A and B (the bipartition)
such that no edge in E has both endpoints in the same set of the
bipartition.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

64International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

Fig. 4 Example for bipartite matching problem [10]

A matching M ⊆ E is a collection of edges such that every

vertex of V is incident to at most one edge of M. If a vertex v has
no edge of M incident to it, then v is said to be exposed (or
unmatched). A matching is perfect if no vertex is exposed; in
other words, a matching is perfect if its cardinality is equal to
|A| = |B|.

The example is shown in Fig. 4. The edges (1, 6), (2, 7), and
(3, 8) form a matching. Vertices 4, 5, 9, and 10 are exposed.

A minimum weight perfect matching problem is summarized
as follows:

Given a cost cij for all (i, j) ∈ E, find a perfect matching of

minimum cost where the cost of a matching M is given by c(M)
= ∑ (i,j)∈ M cij. ■

In this paper, variables related to MWBM problem is

defined as follows:
1) Left nodes in bipartite graph: L = { l1, l2, … , ln }, where

n is the number of bit width of left variable. Left node
denotes the bit position of left variable.

2) Right nodes in bipartite graph: R = { r1, r2, … , rn },
where n is the number of bit width of right variable.
Right node denotes the bit position of right variable.

3) Edge incident to left node and right node: E = { (i, j) | i
= 1, 2, … , n, j = 1, 2, … , n}, where (i, j) is the edge
incident to i-th left node and j-th right node.

4) Cost for each edge: cij for all (i, j) ∈ E is the average
switching activity calculated for a short-term input data
pattern.

Jonker and Volgenant [11] proposed a refined algorithm of a

minimum weight perfect matching, and showed a polynomial
running time. It is notably faster than the Hungarian algorithm
(a.k.a. Munkres' algorithm [12]) and several other linear
assignment algorithms. The proposed method adopts the
refined algorithm by Jonker and Volgenant to solve a MPMW
problem in a polynomial running time.

C. Related Work
The conventional binding methods aim at obtaining binding

solution to minimize switching activity in a specific component,
i.e. functional unit, bus, register, .etc. Generally speaking, the
methods use switching activity matrix (SAM) generated by
inputting a random pattern to a DFG, and simulating the DFG

for a sufficiently long iterations. When generating SAM, they
use a fixed ordering, that is, each bit position from zero to
fifteen coincides with each other.

The existing methods can be divided into the approach of
finding optimal solution and that of obtaining close-to-optimal
solution. In this paper, the former is denoted as optimal method,
and the latter is denoted as heuristic method. The optimal
method such as [13] finds optimal solution. But, because it is
NP-hard, the calculation time increases exponentially with the
size of problem. On the other hand, the heuristic methods such
as [3], [14] find close-to-optimal solution with fast calculation
time.

Chang, et al. [13] proposed a technique for reducing power
consumption during the bindings of hardware components
(registers, buses, and functional units). The problem is
formulated as a min-cost multi-commodity flow problem and
solved optimally. Because the multi-commodity flow problem
is NP-hard, they restricted the domain of pipelined designs with
a short latency.

In contrast, heuristic method finds close-to-optimal solution
with faster computing time. Choi and Kim [3] proposed an
efficient binding algorithm for power optimization in
high-level synthesis. They exploited the property of efficient
flow computations in a network so that it is applicable to
practical designs while producing near-optimal results. Xing
and Jong [14] proposed a look-ahead synthesis technique with
backtracking for the reduction of switching activity in low
power high-level synthesis, effectively reducing the probability
for the solutions to fall into local minimum.

III. BINDING METHOD USING DYNAMIC BIT REORDERING
The proposed algorithm is described in Fig. 5. The proposed

method consists of three parts: Part-1 is performed before
implementing circuits, Part-2 is for the implementation of bus
binding, and finally Part-3 is performed after implementing
circuits.

Fig. 5 Proposed bus binding algorithm

1) Part -1 (Line 1-2): Obtain a bus binding solution.
A bus binding solution is obtained using conventional bus

binding method that is described in section II-C. Note that the

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

65International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

proposed method adopts a fixed bus binding as conventional
method does.

2) Part-2 (Line 3): Implement a bus binding.

The obtained bus binding solution in Part-1 is implemented
in a real hardware circuit. Fig. 6 shows the functional block
diagram to implement the proposed method. The diagram
consists of memory, optimal bit ordering finder, and bus binder.
Memory is necessary to save input data for a period during
which a new optimal bit ordering is found. When new optimal
bit ordering is found, then memory receives ‘done’ signal from
optimal bit ordering finder and the saved input data is sent to
bus binder. A bus binder with the new optimal bit ordering
produces the reduced switching activity.

3) Part-3 (Line 4-13): Switch bit ordering periodically.

In Line 4-5, all variables in DFG are recognized and
switching activity with real input data patterns are saved for
short-term iterations. The number of iterations is the main
factor that influences the performance of the proposed method,
and is determined by experiment. The influence of the number
of iterations on the performance of the proposed method will
be described in Section IV.

Fig. 6 Dynamic bit reordering scheme

For the saved switching activity, the optimal bit ordering is

found by solving minimum weight bipartite matching
(MWBM) problem for all pair of variables. Note that it is not
necessary to perform a bit reordering between the same
variables because the fixed bit ordering with zero to fifteen
coincided always produce minimum switching activity, i.e.
zero.

IV. EXPERIMENTAL RESULT
To show the effectiveness of the proposed dynamic bit

ordering method, eight high-level datapath synthesis
benchmark circuits are used in Tables III ~ IV: 1)DIFF_EQ is
a Differential Equator, 2)EWF is an Elliptical Wave Filter,
3)IIR is a standard IIR filter, 4)FIR is a standard FIR filter,
5)TFIR is a transposed-FIR filter, 6)Lattice is a normalized
Lattice filter, 7)FFT is an implementation of Fast Fourier
Transformation, and finally 8)FDCT is an implementation of
Fast Discrete Cosine Transformation.

The proposed method adopts the refined method by Jonker
and Volgenant [11] to solve the problem of MWBM, and uses
from 10 to 50 iterations to generate a short-term SAM. The
proposed algorithm was implemented in C++ and executed in
a Sun Sparc64-V workstation.

A. Comparison of Total Switching Activity
Table III shows the comparison of total switching activity

(TSA). BIND_OPT is optimal binding method proposed in
[13], and BIND_LP is heuristic binding method in [3].
Dynamic bit reordering is performed to each conventional
method, and the proposed method is denoted as BIND_OPT +
BRO and BIND_LP + BRO, respectively, where BRO stands
for Bit Re-Ordering. The number in parenthesis shows a
reduction factor to conventional methods.

The proposed method denoted as BIND_OPT + BRO gets
the solution having 22.4-23.6% (average 22.9%) smaller TSA
compared with BIND_OPT at the iteration number of 30. And
the proposed method denoted as BIND_LP + BRO obtains the
solution having 18.7-24.0% (average 20.3%) smaller TSA
compared with BIND_OPT at the iteration number of 30.

The proposed dynamic bit ordering method gets better
solution regardless of the type of conventional methods, i.e.
optimal or heuristic method because the proposed method finds
optimal bit ordering by solving MWBM problem and the bit
ordering solution to this problem is independent of the bus
binding solution. Also, the proposed method shows the similar
performance for various benchmark circuits.

TABLE III

COMPARISON OF TOTAL SWITCHING ACTIVITY (TSA) (ITERATION =
30)

 BIND_
OPT

BIND_OPT
+ BRO BIND_LP BIND_LP

 + BRO

DIFF_EQ 101.90
88.96

124.17
97.57

(22.7%) (21.4%)

EWF −a −a 307.41
249.62
(18.8%)

IIR −a −a 177.28
141.98
(19.9%)

FIR 168.54
147.64

170.18
138.02

(22.4%) (18.9%)

TFIR 110.82
95.75

112.25
85.32

(23.6%) (24.0%)

Lattice −a −a 163.38
130.05
(20.4%)

FFT −a −a 249.28
201.79
(18.7%)

FDCT −a −a 220.18 176.03

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

66International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

 (20.1%)
Average

(%) −a 22.9 20.3

 a. memory overflow problem

B. Influence of Iterations on Total Switching Activity
Table IV shows the influence of iterations on total switching

activity (TSA). As the number of iterations increases, the
reduction of switching activity decreases from 34.9% to 12.0%
(on average) because the distribution of switching activity of
input data pattern becomes more uniform. Therefore, it is
desirable to reduce the number of iterations as minimum as
possible.

But, as the dynamic bit ordering is performed more often, the
overhead of the dynamic power dissipated in the optimal bit
ordering finder increases. That is, there is a trade-off between
the number of iterations and the overhead of additional power
dissipation.

TABLE IV

COMPARISON OF TSA ACCORDING TO ITERATION

 BIND_
LP

BIND_LP + BRO
 Iteration
 10 20 30 40 50

DIFF_EQ 124.17
80.24 86.53 97.57 106.24 109.31

(35.4%) (30.3%) (21.4%) (14.4%) (12.0%)

EWF 307.41
204.55 218.60 249.62 260.84 271.50

(33.5%) (28.9%) (18.8%) (15.2%) (11.7%)

IIR 177.28
119.82 134.22 141.98 145.64 156.95

(32.4%) (24.3%) (19.9%) (17.9%) (11.5%)

FIR 170.18
110.48 124.55 138.02 142.13 148.11

(35.1%) (26.8%) (18.9%) (16.5%) (13.0%)

TFIR 112.25
69.51 83.88 85.32 94.30 97.83

(38.1%) (25.3%) (24.0%) (16.0%) (12.9%)

Lattice 163.38
98.60 121.77 130.05 134.95 143.81

(39.7%) (25.5%) (20.4%) (17.4%) (12.0%)

FFT 249.28
173.10 179.66 202.79 213.21 221.21

(30.6%) (27.9%) (18.7%) (14.5%) (11.3%)

FDCT 220.18
143.78 152.12 176.03 185.22 194.26

(34.7%) (30.9%) (20.1%) (15.9%) (11.8%)

Average
(%) 34.9 27.5 20.3 16.0 12.0

V. CONCLUSION
An effective low bus binding technique is proposed to obtain

binding solution having smaller total switching activity by
switching an optimal bit ordering between the bits of variables
within a bus.

Experimental result shows that the proposed method obtains
a binding solution having 12.0-34.9% smaller TSA compared
with conventional methods.

A fixed bus binding is used in the proposed method as
conventional methods do. But, whereas conventional methods
use a fixed ordering between bits of variables, dynamic bit
reordering is adopted in the proposed method. Extending the

proposed method to adopt a dynamic bus binding rather than a
fixed bus binding is future work.

REFERENCES
[1] V. Soteriou and L. Peh, “Design space exploration of power-aware on/off

interconnection networks,” in Proc. Int. Conf. Comput. Des., Oct. 2004,
pp. 510–517.

[2] C. Lyuh and T. Kim, “High-level synthesis for low power based on
network flow method,” ” IEEE Trans. VLSI, vol. 1, no. 3, pp. 309–320,
2003

[3] Y. Choi and T. Kim, “An efficient low-power binding algorithm in
high-level synthesis,” IEEE Int. Symp. On Circuits and Systems, vol. 4,
pp. 321-324, 2002.

[4] W. C. Cheng and M. Pedram, “Power-optimal encoding for DRAM
address bus,” in Proc. Int. Symp. Low-Power Electron. Design, pp.
250-252, 2000.

[5] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Architectures
and synthesis algorithms for power efficient bus interfaces, “ IEEE Trans.
Computer-Aided Design, vol. 19, pp. 969-980, Sept. 2000.

[6] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, “An adaptive dictionary
encoding scheme for SOC data buses, “ in Proc. Design Automation Test
Eur. Conf. Exihib., pp.1059-1064, 2002.

[7] A. P. Chandrakasan and R. W. Brodersen, Low power digital CMOS
design, Kluwer Academic Publishers, pp. 235-245, 1995.

[8] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power
methodology manual : for system-on-chip design, Springer, pp. 4-7, 2007.

[9] J. Kim and J. Cho, “Low power bus binding exploiting optimal
substructure,” IEICE Trans. on fundamentals of electronics
communications and computer sciences, will be published in Jan. 2011.

[10] M. X. Goemans, Lecture notes on bipartite matching, unpublished, 2007.
[11] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for

dense and sparse linear assignment problems,” Computing, vol. 38, issue
4, pp. 325-340, 1987.

[12] J. Munkres, “Algorithms for the assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, no.
1, pp. 32-38, 1957.

[13] J. Chang and M. Pedram, “Module assignment for low power,” ” in Proc.
Eur. Design Automation Conf., pp.376-381, 1996.

[14] X. Xing and C. C. Jong, “A look-ahead synthesis technique with
backtracking for switching activity reduction in low power high-level
synthesis,” Microelectronics Journal, vol. 38, no. 4-5, pp. 595-605, 2007.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:5, No:1, 2011

67International Scholarly and Scientific Research & Innovation 5(1) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
1,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
43

.p
df

